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ABSTRACT

One dimensional flow between two fixed parallel walls composed

of the same substance but at different temperatures and spaced a

distance 2 apart is considered. The hot plate is the evaporating

surface (source) and the cold plate is the condensing surface (sink).

The vapor between the two plates is assumed to be a monatomic gas

consisting of Maxwell molecules. Lees' moment method is used to

obtain a set of six non-linear equations whose solution, subject to the

boundary conditions of this problem, is possibly valid from free

molecular to continuum conditions.

Both the non-linear equations and a linearized approximation to

them are solved.

The non-linear problem required the solution of six simultan-

eous and ordinary non-linear differential equations with three bound-

ary conditions given at each wall. An iterative numerical procedure

was used to match these boundary conditions. For the continuum

limit (Reynolds number large), the vapor leaving the hot plate was

found to accelerate rapidly to an equilibrium velocity. In the vicinity

of the cold wall, the vapor first decelerated, then experienced a

slight terminal acceleration. In the rarefied limit (Reynolds number

very small.), the vapor velocity was found to be essentially constant

across the flow field.

iii



The linearized problem in closed form under the assumption

of a small mean velocity is solved. Large.and small Knudsen

numbers are examined. In both the rarefied and continuum. limits,

the mean velocity was found to be constant across the flow field.

For given emission temperatures and density ratios at the two

surfaces, the mean speed between the plates varied with Reynolds

number because of the effects of molecular collisions.

The evaporation coefficient is defined here as the ratio of the

actual mass flux to the difference between the Knudsen effluxes from

the two surfaces. Its value is nearly one for the range of Knudsen

numbers considered in both the linear and non-linear problems.
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NOMENCLATURE

B = mass constant

B = momentum constant

B3 = energy constant

c. = vector particle velocity

C. = relative particle velocity
1

C = mean molecular speed (I.

d = distance between two plates

E 1IE 2 = 1 + erf [u RT] , 1 + erf u //2RT ]

f,fl = velocity distribution functions for "probe" and colliding

particles, respectively

flif 2 = components of two stream Maxwellian

F. = external force acting on a single particle

h = specific enthalpy

H = total enthalpy

k = Boltzmann constant

Kn = Knudsen number (X/d)

m = molecular mass

M = Mach number (u/a)

n - number of molecules per unit volume

nln 2 = number density functions in two stream Maxwellian

N1,2 = small perturbation to n ,2
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N = N1- N
2

N+ = N1+ N 2

p = pressure (p = pRT)

q = heat flux vector

Q = arbitrary function of particle velocity

R = gas constant

Re = Reynolds number ( p ud )

S = speed ratio (u/ )J/RT)

t = tinme

t
1
,2 = snall perturbations to T 1 ,2

- 12t_= t
1
- t

t+ = tl + t
2

T = temperature

T1,T
Z

= temperature functions in two streamn- Maxwellian

u = mean velocity in x direction

ul u
Z

= velocity functions in two stream Maxwellian

U R= T or VR T

U
1

, U 2 = small perturbations to u 1 ,u 2

x = coordinate in x direction

X1,X 2 = exp -U ,/2RT
1

,

a = the evaporation coefficient

1 ,2= 2RT1,2
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y = ratio of specific heats (c /c)

e = small parameter

X = mean free path

[2 = viscosity

v = kinematic viscosity

w1 2 = u/ 2/2X1,2 1U,2

p = gas density

a.. = stress tensor
Ij

T.. = O..+ p6..
13 1J lJ

Subs cripts

I indicates hot wall

II indicates cold wall
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Chapter 1

INTRODUCTION

When the state of the vapor at a gas-liquid interface is at the

saturated temperature and pressure corresponding to surface

temperature, an equilibrium situation exists. There is an exact

balance between the two molecular processes of evaporation and

condensation. If the vapor and liquid surfaces are not in equilibrium,

then, a net flux of molecules either condenses on or evaporates from

the surface.

In recent years many publications have appeared dealing with

evaporation from and condensation on a solid or liquid surface.

Evaporation either into a near vacuum or into a gas where there are

small deviations from equilibrium at the liquid-vapor interface have

been the two areas most thoroughly studied. Little effort has been

directed towards investigating the evaporation and condensation

process over a \wide pressure ratio range.

Prior to the space program, interest in low pressure evapora-

tion and condensation grew from the study of thin film deposition,

molecular distillation, and other aspects of vacuum technology. In

the last decade the field has expanded to include the study of numer-

ous inatcrials which may evaporate or sublime in a space environ-

ment. Such processes produced both forces and heat fluxes at the

1
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surface-vapor interface which could be of concern to tile spacecraft

designer. For examnple, tlhese forces could overcome the small

gravitational torques required for operation of a gravity gradient

satellite.

Initial work in the field of low pressure evaporation was con-

ducted by Lan,-nl-mir [ 11 in 1913. He was interested in sublimation

of incan.desce..nt, li.ght filaments and developed a semi-empirical

expression for the rate of evaporation. Since that time many more

experimenatal studies have been performned to evaluate the evaporation

(sublinal :io;n) coefficie',its of a. variety of mnaterials. A compilation of

experinJcuntal evaporation coefficie:nts cbtained through 1961 is given

by Paul 21]. HeI-I indica-ttd that. the majori.ty of materials which have

been stud-edl evaporate into a vacuunm. a-. or near the maxirnum rate

given by the Knudsen-Langmuir expression for effusive flow

= 1/4 p C (1)

w;here C = -- and p is the vapor density. In a vacuum environ-

ment, the experimental evaporation coefficient is obtained by dividing

the measured or calculated mass flux by that given in equation (1).

Mlaterials; w)hich evaporate a.t significantly lower rates than the

maximunn w\ere generally characterized as those which exist in the

vapor in forn-s different from ;the condensate. These conclusions

were in agreelrent i.lth an earl icr s t:tud. .l.T y Kna- ,la.ce andb~~~~~~~~~. r ...
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Stranski [3]1. Paul also noted that unclean surfaces and experimental

errors tend to reduce the evaporation coefficient so that in some cases

the experimentally determined value may be lower than the true

value.

Experimental studies undertaken to determine the evaporation

coefficient for 2-ethyl hexyl phthalate in a near vacuum environnment

led Hickman and Trevoy [4] to notice the effect of a small back

pressure on the evaporation coefficient. They found that at a limiting

vapor pressure of 1 p[ the evaporation coefficient was near unity while

a two order of magnitude increase in the vapor pressure reduced the

coefficient to 0. 75. In a later study with water, Hickman F 5] again

obserived illh iLi1iutUcc o0 back pressure on the rate o0 evIaporation.

He obtained an evaporation coefficient of 0.25, which was consider-

ably higher than most values given previously.

A number of theoretical investigations have been conducted in

which evaporation from a surface was studied \ith a wide range of

back pressures. In 1936 Grout [ 6] considered the one dimensional

problem of evaporation of a monatomic vapor from a surface. --Ie was

primarily interested in evaluating the gas properties at the vapor-

surface interface. To do this, Grout developed a modified Max's;ellian

distribution incorporating four constants. The values of the consta.nts

were determined by balancing the gas-liquid nmass, mnornentuin, and

energy fluxes and specifying the rate of evaportation.
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A- similar analysis was perf'orn.ed by Schrage '7 1 in 1953.

However, he assumed a differcnl form. for the dis tribition funiction

near the surface. The outflo\;w (u:.> 0) was described by a Maxwellian

distribution function f correspe:li;ing to the emitting ,urface taemp-

era.ture. The ba.ck flow (u < 0) v.'-:s assunie. to be rep-r cenl 'td by

f (i+ BU) where B is related to L ic; mass filux and U i]: t:he randomll

rolecular velocity perpendiculaular :to the su:-face. As with Crout, the

objective of Schrage's analysis w;:-.s ito evaltuiate gas prope:1r.ies at the

interface, but the mass flux was an undeter:Ained pa ram eter.

Schrage studied both mona.tornic -:.nd polyato:inic vapors,

More recently, Collins and Ed8wa rds [ 8] studied evaporation

from a spherical surface into a \rvacuumrn or into a pure vapor under

strong nonequilibrinm conditions, Thet objec_.1 of- this innvrcsti.gation

was to deternmine the effect of m,:-i.ccular ba.ck. scatter in the encorn--

passing vapor cloud on the rate of evaporation for stroi:ng nonequili-

briumn conditions. The continuurn assunlpti. on was applied a.nd both

rnona.tomnic and diatomic vapors \-were considered. A Grad repre-

sentation for the distribl'tion fu.ncti.on was used to pern-i.t the connec-

tion of the surface boundary condlitilons and the gas dynamics in a

consistent manner. It was found that for evaporation into a vacuum

with infinite Reynolds number, theo cvapcrati.on coefficient was

independent of surface telmperaht-re and equal. to 0.8116 for a mona-

tounic gas and 0.7778 for a diatoi-;i gas. Ev-apor; Ltion inl:co a homno-
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gcneous vapor was also studied. The evaporation coefficient was

found to be greater thani one in cerlain cases. In both problems the

rate of evaporation was determined not specified as it was in Crout's

[ 6] and Schrage's [ 7] case.

Within the last two years three papers have used Lees' moment

technique [9] to approximate evaporation and condensation phenom-

enon.

Patton and Springer [ 10] studied two quasi-steady problems:

i) evaporation from a plane surface into a vapor

ii) flow between t\-,o parallel plates at different temp-

eratures.

in their analysis the vapor is treated as an ideal gas composed of

monatomic Maxw\ell molecules, with a Lees' representation of the

distribution function. They employed four moments (mass, x-

momentum, energy, and x-heat flux where x is the direction of

motion) of the Boltzmann equation and solved a linearized form of the

resulting equations in order to obtain an analytical representation for

the mass flux in terms of Knudsen number for the two problems

considered.

In a similar manner, Sampson and Springer [ 11] investigated

the evaporation of a spherical drop into a pure vapor. Again four

moments were taken and the resulting equations linearized to obtain

the mass flux. They also considered droplet evaporation into a gas-
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vapor mixture.

Both condensation of a vapor on a flat surface and evaporation

from and condensation on a spherical drop were studied by Shankar

[ 12]. Besides solving both problemns using the quasi-steady assump-

tion, he also obtainied a solution for thc nonstea.dy filat plate condorn-

sation problenl. Shankar used the same four n:Lomnents that vwere

employed by Springer and his associates to determine the mass flux

for both problems. Furthernlmore, he solved the liquid-vapor inter-

face (flat surface) problem. with a six mwon.ent method and found

essentially the same expression for the niass flux as given by the

four momlnent procedure. He did not consider the two plate problem.

jile advantage ot Lees' l 9J multiple moment kinetic theory

technique is that it affords a m-lethodl of solution which is in some

circumstances valid over the range of flow\} conditions from free

molecular to continuum. The corresponding equations are, however,

so complex that even with a one dimensional evaporation problem it

is necessary to linearize the moment equations in order to obtain an

analytical solution. There is, as always, a question regarding the

range of validity of the linearization. For example, the linearized

four moment method uscd by Springer and his associates and Shankar

to solve the flate plate and spherical problems does not allow for a

near equilibrium condition to exist with mnass flux. Further, the

small parameter used to linearize the equations is the mean velocity.
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Thus, a problem arises in the case of sunultaneous small velocity

and high Reynolds number limits.

In the present investigation the problem of flow between two

parallel plates at different temperatures is solved numerically for

some cases using Lees' moment method. The influence of the

induced vapor cloud on the evaporation rate and the vapor motion

between the L\wo plates can be studied over a range of flow conditions.

Six moment equations are used along with the proper boundary condi.-

tions.

Both the non-linear and linearized problnem are solved. The

non-linear problem is a two point boundary value problem which is

solved numerically. The solution to the two plate problem is given

analytically for the case where the equations rrmay be linearized as

small deviations from equilibrium.

Several simplifying assumptions are rnade. They are: the two

plates and the vapor are composed of the same substance; the vapor

is a monatomic gas consisting of Maxwell molecules and obeys the

perfect gas law; the accolmmodation coefficient is unity, i. e., every

molecule that strikes the surface will be absorbed by it; and a

Maxw ellian distribution corresponding to surface temperature with

zero mean velocity describes the molecules emitted by a surface.

The possible effect of surface structure on the evaporation and con-

densation rates is neglected.



Chapter 2

KINET'IC THEORY FORMULATION

2. 1 The Boltzlnan Equation

In fluid flow fields where large gradients occur, translation

non-equilibrium effects are observed by the presence of viscous

stress and heat flutx, For such flows the Mta.x\-ell distribution func-

tion does not adequately represent the translational rnolecular

velocity and it is necessary to obtain other e xpressions describing

the physical process. Consideration of the conservation of nmass,

momentunll and energy in the absence of e.xternal forces results in

five differential equations describing a larger numnber of dependent

variables. For Newtonian liquids and perfect gases at norllal

densities it is possible to emlpirically justify additional constitutive

equations and an equation of state which allow the number of depen-.

dent variables in the conservation equations to be reduced. to five.

For gas flows at lower density the constitutive equations are not valid

and it is necessary to approach the problem, frorn a different point of

vi ew .

A number of methods have been developed to describe gas flows

over a range of gas dynamic regimes. The lmost complete of these

is to follow all of the particles in thcir collisions throughout the flow

8
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field. Such attempts have met with little success because of the

great complexity, although Monte Carlo techniques which follow

representative molecules are being used successfully in some

problems. In lieu of following the dynamical trajectories of separate

particles it is mathematically feasible to represent an approximate

variation of the particle distribution function throughout the flow.

Such an approximate formulation is applied in this investigation and

is described briefly below.

The variation of the molecular distribution function is governed

by the Boltzmann equation. This equation can be derived either by

introducing appropriate time averages into Liouville's equation for

an N particle system [ 9] or by writing an equation for the rate of

change of the number of particles in a given velocity range (Vincenti

and Kruger [ 13 ]). It has the form:

at C. d +(Ff) = f , (c)f(C') -f(c I)f(c. )]VdAcdic., (2)+c.-+ --- (F.f) (
;3t j x. c j 1 j c 

.J J _-a dAc

where f is the distribution function, V is the relative velocity between

colliding molecules, and dAc is the generalized differential collision

cross section. Integration is over the velcocity space of the colliding

molecules. From left to right the terms of this equation may be

interpreted as the rate of change of the number of molecul.es of class

c. which results fro-mL convectio:n. -: tern:l forces, and collisions
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with other molecules. There are two implicit limitations of the

Boltzmann equation [ 13]. First the range of intermolecular forces

of the gas must be small compared to molecular separation which

must in turn be small compared to the mean free path. Such a

limitation corresponds to the assumption of a thermally perfect gas.

Second the distribution function must not change appreciably over a

distance of the order of the range of interparticle forces or time

interval of the order of the duration of a representative collision.

For the majority of gas dynamic problems of interest these

limitations cause no problem. The Boltzmnann equation is difficult

to solve because of the numbers of molecules involved and because

of tile ,nlJ).t.iUCe y ii.. by i i lltllicr collision integrai.

As a result it is usually necessary to introduce approximate methods.

A number of techniques have been developed which exploit the possi-

bility of linearizing the collision integral term. Unfortunately, none

of these methods give results applicable over the range of flow

regimes fromn free molecular to continuru and it is necessary to

introduce another forin of analysis.

2.2 Maxwell's Equation of Transfer

The difficulty inherent in an attempt to solve the Boltzmann

cqu;ation directly is not the only motivation to find another kinetic

theory formulation. Maxwell recognized that it is not the distribution



function itself that is of interest but certain lower moments which

correspond to physical variables of interest. As a result he devel-

oped an integral equation of transfer for any quantity Q which is a

function of particle velocity. In general, such an expression may be

derived either by considering the sources of change of Q in the physi-

cal space or by multiplying the Boltzmann equation (2) by Q and inte-

grating over velocity space. The resulting equation is known as

Maxwell's equation of transfer and takes the form:

t-+ ' (cjQ) - F = A[Q
bt 6x. j j ac

J j
(3)

co co

J J (Q' Q 1v d c dAI
c-o _oo dA

where (Q'-Q) is the change in Q(c.) resulting from a molecular

collision and V is the relative velocity between colliding molecules.

Integration is performed over the velocity space of both the probe

particle of interest (unsubscripted) and the colliding particle of a

different class (subscripted 1). As before, dA represents the

general expression for the differential collision cross-section.

As with the Boltzmann equation for the distribution function the

terms above may be interpreted from left to right as the rate of

change of Q in a fixed volume due to particle convection, external

forces, and collisions. In this expression the distribution function
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does not appear explicitly but rather as a weighting function, the

form of which is discussed subsequently. In this n-anner the

Boltzmann equation for the distribution function is not satisfied

locally but rather in some average sense. Such an approach is

analogous to the integral techniques used in solving boundary layer

equations.

The equation of transfer given above cannot, in general, be

reduced any further \without a knowledge of the distribution function

and the details of the collision process. However, if Q(ci) repre-

sents the mass, momentum, or energy per molecule, these equations

simplify. For such functional forins of Q conservation of mass,

momentum, or energy during elastic impact require that the ri-ght

hand side of equation (3) be zero. For these collisional invariants a

system of equations is obtained which is independent of the collision

process. These equations constitute a coupled set of five differential

equations for the conservation of mass, momentum, and energy of a

rnonatomic gas occupying a fixed volume in physical space. Depend-

ing on the formn taken for the distribution function it is generally

necessary to consider additional moments to obtain the proper

number of differential equations for the undetermined functions in

the distribution function. It is in evaluating these "higher" moments

that the details of the collision process must be specified.

k
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2.3 Maxwell's Inverse Fifth Molecular Repulsion Model

The collision integral on the right hand side of equation (3)

may, in principle, be solved for any arbitrary distribution function

and law. of force between colliding molecules. Practically speaking

it is desirable to choose a law of repulsion which affords the greatest

mathematical simplicity yet retains the non-linear character of the

collision integral and the short range interaction behavior implicit

in the derivation of the Boltznmann equation. These considerations

prompted Maxwell to suggest an inverse fifth power repulsion law

which takes the formn

-5
F = mlm2Kr (4)

where K is a constant, r is the distance between centers of molecules,

and m1 and ml
2

are tile mnolecular mass.

The inverse fifth power repulsion law does not provide a

particularly accurate description of intermolecular forces, however,

it does allow one to simplify the collision integral. For this repul-

sion law the relative speed of the colliding molecules vanishes under

the integral and the collision integral may be written as

A [Q J = (ml+ m)K j fflJdc dc (5a)

wvhe re

oo 2rr
J = J (Q'-Q)de a da (5b)

o o



14

and e and a are parameters describing the collision process. Thus

for Maxw;ellian molecules the collision integral may be interpreted

as the value of J averaged over the velocity space of the two partici-

pating classcs of molecules. Furthermorie, J is proportional to the

value of Q and is independent of the velocity distribution function.

2.4 Lees' Bimodal Velocity Distribution Function

All that remains to complete the kinetic theory formulation is

an expression for the velocity distribution function. Although the

form of the distribution function to be used in solving the equation

of transfer is not unique, basic requi.rernents to be satisifed are:

i) It: mnust have the "two-sidcd" character essential to

rarefied gas flows,

ii) It nmlust be capable of providing a smooth transition

from rarefied flows to the Navier.-Stokes regime.

iii) It should lead to the simplest possible set of differen-

tial equations and boundary conditions consistent with

requirements i) and ii).

Guided by the limiting solution for free molecular flow, Lees

[ 9 ] suggested that the distribution function take the form of a

"two-sided" Maxwellian. At a given point the contributions of the

two "sides" are determined by line of sight. This is illustrated

schematically in Figure 1 for a spherical body placed in an unbounded
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Figure 1 Cone of Influence for Two Stream Maxwellian
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free-niolecular gas with diffuse reflection at the body surface. At

a point P, particles with velocity vectors lying within conical Region

I are described by a Maxwellian corresponding to the velocity and

temperature of the surface. The distribution function for the re-

maining particles emanating from Region II is the free-stream

Maxw ellian.

In the general case the two regions are determined by the line

of sight principle and the distribution function takes the form

c in Region I

f = f n, (r; t) exp- r R['1_- rt) R' [u(r, t)1

(6)
c in Region II

3 /2 c - Uz- -2 t) 2
f = f

2
= n

2
(r, t1 )) exp -

2RT(2r, t) 2RT2 (r, t)

In these tvwo expressions n1 (r,t), u 2 (r,t), and T 1 2 (r,t) are ten

undetermined functions of space and time. It is then necessary to

deterinine these functions by solution of ten simultaneous moment

equations. When these functions are specified, all macroscopic

quantities of interest can be evaluated.



Chapter 3

MOMENT EQUATIONS AND BOUNDARY CONDITIONS FOR

THE FLAT PLATE EVAPORATION-CONDENSATION PROBLEM

3. 1 Problem Definition and the Distribution Function

The present investigation considers the two plate problem. The

surfaces are maintained at unequal temperatures and external forces

are ignored. Emphasis is placed on understanding the physical

behavior of a single component vapor between the two bounding

surfaces. It is assunmed that the two surfaces are maintained at

constant tenmperature. The hot wall is the evaporating surface

(source) and the cold wall is the condensing surface (sink). It is

further assumed that the vapor between them is monatomic, obeys

the perfect gas law, and consists of Maxwell molecules. The process

is quasi.-steady.

The problem is illustrated schematically in Figure 2. The hot

plate, at temperature TI, is located at x = 0 and the cold plate, at

temperature TII, is placed at x = B. For this problem gradients of

physical variables and parameters in a direction parallel to the

plates are zero. As a result, the expression for the two-stream

distribution function may be written

17
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Figure 2 The Two Plate Problem



19

c > 0:
x

f = f (x) = nl(x)[ 2nRTi] exp ( c 1 ) y
1 2-nRT WI t 2RTi(x)

(7)

c < 0:
x

2 2 2
3x) = /2 (c - u(x) + c+ c

exp{-. 2 .(x
f = f (x) n (x) 2 (S) 3 e1TRT ~ (x) e 2 RT ( )

In these two expressions, n 1 , 2 (x), u 1, 2 (x), and T 1,
2

(x) are six

undetermined functions of the independent variable x. With this form

of the distribution function the six param.eters may be evaluated by

simultaneous solution of six independent moment equations.

3.2 Equations of Transfer

In obtaining these equations, it is desirable to consider the

lowest moments of the Boltzmann equation for two reasons: first,

they allow the greatest degree of mathematical simplicity; and

second, the "lower" equations generally involve moments of tlie

distribution function which may be interpreted as physical variables

of interest. With this in mind, the six lowest independent moment

equations will be developed; this will involve choosing successive

forms for Q(ci) that represent the lowest powers and comnbinations

of molecular velocities.

As discussed previously, choosing Q(c.) to be the molecullar
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mass, momentum, and energj results in moment equations which are

conservation equations for the respective quantii.es. For these

values of Q(ci) the collisional term is zero and in the absence of

external forces the generalized moment equation (3) becomes

successively

bt (P) -+ -( c ) = (8)

a a --

~3~~~~ 3

i tlc. )+ a (p cjc.) =0 (9)

* d 

Q (p c n) + (P c c.c ) (10)

Q Mcr = - d (P c ) = 0 (12p

2 7 2

interest, time and the y- and z-derivatives are zero. Thus, the first

Q =mc 2: c )= 0 (12)2 x dx x

mc /2: d c (13)
3 -(pc x

Expressing these equations in terms of physical variables is

facilitated by equating the molecular velocity to the sum of the mean

and thermal velocities



21

c = c + C = u + C . (14)
X X X X

In ternms of the thermal velocity the following moments of the distri-

bul:ion function can be identified:

- -p C.. ..- p.. (5)° ij - -p Ci T ij- P 6 ij (15)1j 1 j 1j i

3 1 2
2 kT 2- p (16)

2 2

= - CC . (17)

In addition, the following equat:ions are appropriate for the distribu-

tion function and gas model asstuned

n = j f dc (18)

p = nkT = pRT (19)

_1 5
h = e + RT . (20)P 2

By using equations (13) to (20), the first three moment equations may

be rewritten as

d [cpu] = (2 1)

d 2
dx [ pu - c ]x =O (22)

dd pu ( 3 Rx2
. [P u 7 R'r + -7-. a 2] = (23)d2 22 x xx
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Integration of these equations yields

pu = mB 1 (24)

2
pu - a = nB

2 (2 5)
xx 2

32u2
Pu( RT -F ) + x u =nmB3 (26)

where B 1 , B 2 , and B 3 are integration constants.

The next higher moment equations are obtained by setting

4(ci) = mcjck

The resulting equation of transfer is interpreted as an expression for

the flux of momentum, mcc k ' in the x. direction. For this value of

Q the collision term on the right hand side of equation (3) is non-zero

and is evaluated by Lees [ 91 for Maxwell molecules. In this

problem, equation (3) simplifies to

d p
[ m c c cc P I (27)dx x j k p jk

where j and I may independently assume values from 1 to 3. Three

non-trivial equations are obtained for j = k, although due to symmetry

in the y and z directions the two independent equations resulting are

2 d 3 paQ = nc: [Ic P T (28)
4a x dx x ,u xx
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2 d 2 p
Q4b mc d-x [ mc c ] = P (29)4b y dx xy P yy

Adding twice equation (29) to equation (28) gives

d [ x x y zC 2 i 

which is identical to the energy equation (13). Thus of equations (13),

(28), and (29), only two are independent; the choice of the two to be

used in the solution for the arbitrary functions will be made on the

basis of simplicity.

The fifth equation of transfer is obtained by setting Q (ci ) =

nI c.(c /2) and..y b tcrpr-tc as the flu/ of .nc; .y . i;. tC j-

direction. Lees [ 9 ]1 has evaluated the corresponding collision

term for Maxwellian molecules and in this case the resulting lmoment

equation becomes

2 m c d -c 2

Q = mc (c /2): dxl x I -,u L u]x (30)
5=d x d (xx0

The sixth independent equation of transfer is obtained by

choosing Q 6 (ci) = mcj. The meaning of this equation is less physical,

2
as is typical of higher moments. It represents the flux of mc. in the

j-direction. The collision integral is evaluated in Appendix A and

the moment equation reduces to
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3
Q = mc:

6 x
(31)dd [ c 4 '] pr~lx + 3 ~ ] ·mc ] = -[ + 3u -- m C .

d m x x xx Z x

In summary, the six independent differential equations of trans-

fer to be used are

.d C[ ] = d= 
C - [pu] = 0 (11)

dx x dx

d [mc2] - d pu 2 a - O= (12)

2
d [mc c 2 ] d [pu( p + Z )+ x axu ] (13)

- two of

~~-3~~~~~ \s ~three

dx- [l C -X P = t ;20J

dx L x xy xx

2
-d[ mc ] - P [q T - U 0 (30)

x x ,u x2 xx 2

3.3 Expression of Physical Variables and Moment Equations in

Terms of Parameters of the Distribution Function

In order to solve the above equations for the parameters nl, n 2 ,
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ul, u 2 , T 1 , T 2 as functions of x, it is necessary to express the

equations in terms of these variables. In principle this involves

nothing more than evaluating the prescribed moments of equation (7)

and substituting them into the equations of transfer. In performing

these operations and in reducing the moment equations to their

simplest form, a significant amount of algebraic manipulation is

required which adds nothing to the understanding of the problem.

Therefore, the contributing physical variables and higher moments

of the distribution function are evaluated and the final forms of the

equations of transfer are presented without details of the intermediate

algebraic steps.

The appi'JopLiaL e -i-iont$ils o tiit blJiimaum Uib ItribuiOLI ouL £uLiun

(7) were obtained by using integrals summarized in Appendix B.

Because of the recurrence of certain functional forms in all moments,

it is convenient to define

El 1 + erf[ 7 I.(x) ] (3 2 a)

U 2 (x)
E = 1 + erf[ -- , i() (32b)

X 1 - [ 1( )/'T1 )] (32c)

2 exp -112()/Z 2(RTz()] (32d)
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and to replace the variables Tl(x) and T 2 (x) with

B1 = 2RT 1 (x) (32e)

2 = 2RT2(x) . (32f)

With these definitions, the physical variables and higher moments

may be expressed as

JX 2 n 12E 1 2 n2 E

nu Jcx 2 1(E+ X 1 )+ n2 (u 2 E2 X 2 ) = 1

cJ = -mf C dc -d= -n ic - u) dc

x mnl {[ -2 + '1 E1 E 1 -u =1

- mn2z ([ 2 +u2 ] jE2 2 -T }X

ay = a
yy zz

2
+ rrlnu

= - mJ fC dc
Y

1 1
= - -mn B -1E

1
mn E24 1114- 2 22

1~ -23 S1EC1,p = - Z (s../3) = -mn I(±->+U - X
ii 6 lL 1Z. 1 ni l
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1 23 2x1 2
6 n2 [(U+ 22 )E2- /_ 2

qx =2 S CxC 2 d-c

1 r 5 2 2
mn 1 {- 2 (U-Ul)Bl+(U-Ul)3]El+[ZRl+ UI+3(u -uu )] X1

4 1 L ~5 3'2 2 -I

+ 1 ~ nz 3 Z \B ¢ u2)J xdc n 1 {(u+2 ul,)E,+ (1,3 u x1 }

+ -n 3+U 2 2)E2 - (2+ U2) X2}2 U2L\u3 2 2 2 rr2

f C c dc 1n tE + X n 2E ,[u'E -- ]x y 4T21 I T 1 2 2

+ 2}

4 1 5 [+ 4u: X+U 4 , - [1+ 7. +_
4 2{[ 4 2 2 2 2 2 2 2 22 ]2 TT X}

4 - 1x 3}J f c 4 d c 2 {[ 41 +3131Ul+ ''[u2+ ]'u16[1 U1) U 

+ 2 n {[ 3 ,.+ ,,2.+ u. ].2- uZ+ 2 U232 ], x
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f C dc = f(cx- u)dc

[ (u-u1 ) 2 ](u-u1 )E 1 + (l+u +3u - 3uul) 1
1 }

+ 2l n2 { 3 + 2+ (u-uz)u ](u-u)Z (82+u +3u - 3u2 ) /X 2 } -

Therefore, the three.conservation equations become

= d LZB1 ] = O (33)d [n

u1)El+ 1
d [n

1 1 Tx 1 } + n { + U2 zE 2 - U2
(2(2

dx [2 

{
2 {( 2 U22+ U') _ 2+' zTl-2 X =

X 2 }

(34)

(3 5)

Similarly, the remaining moment equations may be simplified by

combining terms and by utilizing the integration constants B 1 , B 2 ,

and B3 to yield

3+ 2UPI)E+ nl(l l) 1
jx I I 1-

(UIE1+/ X1) + 2(1 IT22 2)

( I u P+ u )El + (2@1 -+ u') -IXdx[1

d [4B_1 = ° -
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33 2+ nz(u 2 2 U2 2 )L 2 - n2 ( 2 + u2 ) x2] (36)

- 2 2 nu - ZBZ+ 2 (nl1Ei + n2
)
E 02

d 11 (Ul 2 22) 

+ -P LZ[ nu - 2B2+ 2 (nlE 11+nzEZB2)]2 

5 2 2+ 45 + z 3 7_X
dx [nl( 81+ 4Ul l+UlE +nl(u3l+ 7 U11 X

d[ 1 1+ 1 ) 1 E 1+. ( E1 0 { 4 p [B21(3 _ u(B nllB1E1(+ n ZBE(EZ)) ] = )

d-n 32 2 
dx [n,(3 + 381+ u+ Ul)El+ nl(Ul 5U,) X~ix 4 1 _ 1 I

. 2 ( 3 02 u4 ( 5(39,- -n 3 )E - =0.5 (94 2 2kj22 r2 2 zT 2 2) J

2 P -u [B I(nlBEl+n 0 E 2B 3 - nlBl(UlEl+ X

-T 2 Tr ):°
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3.4 Non-Dimensional Equations and Boundary Conditions

Non-dim ensionalization of the physical variables and moment

equations is accomplished by introducing the following definitions

x = dx

n1,2 nI n1,2

2-
B1,2 = 1,2

where the characteristic velocity U = v/RTI and variables subscripted

I are evaluated at the surface of the hot plate. Note the cold plate

could just as easily be used as a reference. The viscosity law for

a gas composed of Maxwell molecules (Appendix A, equation (A14))

is

T

pi 
=

I

With this result, the coefficient 
p

becomes
[I U

pd n Re
- l S = n Re

where the Reynolds number is defined by

PI Ud
Re - (40)

U
and y M = 1 because M =

/yRT I
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For spherical molecules the relation between viscosity and the

mean free path X is

Id = 2 P C ?.

Hence, the Reynolds number in this problem can be related to

Knudsen number (Kn) by

Re = ( 2) = 2 (41)

where Kn = X/d.

In terms of the non-.dinmcnsional quantities, the integrated

conservation equations and physical variables of interest become

continuity

n[2l X} + U
2
E

2
n , 2 ] nu (42)nl x In11 1 2 2

x-m om enturn

_ --

2 2 1 1 1 l 2 2 2 2

=2 (43)

energy

n1 2 1

4 [ (2Ul' U1 'I)
E

+ (2+' ' U l+ ) X1



-2 2 U2- u2/ B

+ +-- 1-

n = nlEl+ nZEZ = p/T

pressure

P = nl [(+U1 2 E
1
+ 1 1 X1 ]

+ I [ ( 2+ 3 -2) 2 F2 l5X2 ,
r2--2 - - -2

1-u-2
- nu
3

normal shear stress

xx 3 n Il[uEl U1 X1]

heat flux

q ·[ 1 n { [ 2(u-u l) 1 +(u-u 1
) ]E l

+[2-2+ u 1 3 ( 2u -u 1 )

42 2 (uu+( _ ]E2+ [2,+u 2
+3(u -uu X } -2 nZ '2 2 . 2~ 2.T 

(48)

The evaporation coefficient is given by

32

(44)

(45)

(46)

2 -- 2
- nuT 

(47)

1- [ -2 -
T .2 2 2 E2-2 ·,TT
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1 8/RTI I
4 PI4 T 4

8RTIT

II / TT ( Irl/- I IFI )

The remaining four moment equations are

x-m om entum flux

d - -3 3-- -En i -- +n) 3--2]
I 1 2 2 22

- + u -)-n20 ( U2 )
B2
rc

(50)

} - Re n { Zn u - B2 + (n 1 E 1 n2 2 )

= 0

y-m nlOn-itlr fl ,!v

d _ _1(_
d - n Xl3lu E 1 + -lx1 )

+ Re n2 n u -22 2 (ni1El + nZ82 2 )= 02
3 enI u2 2111 2

x-energy flux

d 5- -2 - -4 - 7-- _ [ n 1 + 4ul +1- ul )E1+ nlt uI 2 u1 TT1

+ n 42 + 42 2 2 )E 2 -n2 2 2 
2

]

+ '2 Re n -[ u- + Z T2- -o

+-~RenI2 B-uI+n -n BE ) 03 L 32 ~~l$1E 221..

33

(49)

(51)

(52)

r/ -

2 2( U2 E 2 T1x2)]
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x-flux of c
x

+ 2 Re n -uL[ Bz+4(nllE+ n26E2)] + 2B3

43 1

The boundary conditions for this problem are established direct-

ly froin the assumptions related to the nature of the flow at the two

walls. In the absence of any conclusive evidence to the contrary it

is assumed that all incident molecules are absorbed and thermally

accommodated at the wall surface. Furthermore, molecules are

emitted from the surfaces with zero mean velocity and with a local

Maxwellian distribution corresponding to the plate temperature and

the number density of the saturated vapor at that temperature.

Mathematically these assumptions are equivalent to the

following boundary conditions

at x = 

n =nI n=

u 0 U1ul0 (54a)



TT =T
1=T

at x = 

n2 = nII

U2 =0

T
Z

= T2 II

2 II Iz= n ii/n I

U2 =0

B2 =2TIi/T

and T
I

> TII.

35

(54b)



Chapter 4

THE LINEARIZED TWO PLATE PROBLEM

In order to find an analytical solution to the non-linear

equations (42) to (44) and (50) to (53), subject to the boundary condi-

tions (54a) and (54b), -a small deviation from equilibrium is consi-

dered. This approach, and the resulting equations are identical to

those given by Shankar [ 12 ] but different boundary conditions will

be applied. The first order perturbation solution is found by using

n = 1 + N + ...

n
2

= 1 + N2 +...

T
1
-1 +tl+... (51 1 *-- (55)

T2 =1+ te +...

1 1_

U2 = U2
+ -

where e is a small parameter and N 1 2 , t, 2 and U1,2 are of 0(1).

Definitions (32a) through (32f) become

= 2(1 + t + ... )

= 2(1 +t e+...)

E2 U2 + 

· 236
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X1 = 1 + O(e ) +...

X 2 = 1 +0(e 2 ) + *-

where 8 = 2T. The boundary conditions are

atx = 0

(nII nI) AN
N (0) = = -AN (57a)

III II

(TII- TI) AT
t1 (0) T- AT

II II

U (0) =

atx = 1
N 2 (1) = 

tz2(1) 0 (5'7b)

U2(1) = o

where AN and AT are of O(e). The cold wall conditions are used as

the references values in solving the linearized problem. This is

consistent with Springer and Patton [ 10] .

By placing equations (55) and (56) into the moment equations

(42) to (44) and (50) through (53), we obtain

2(N1 - N2 ) + T1- T+ 2+ (U1 2 ) = (58)

N T+ +2 (U. -U.) 2B' (59)1 2 1 2 1 1 2(~IUZ) Z; 59
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N N 2 + 3/
2
(T

1
TZ) + 5/ ( 1U1 + U 2) = 3 (60)

d rr

(d (I1 N 2 +3/2(T 1 - T 2 )+ 3/2 ( 2 ))

(61)

_ (U1 - u 2 )

-s -"'~ 2 3Kn

dx (N1 l+ 3/2(T1 - T2 ) + ( U1+ (2) )

(62)

=1/3 - 1 
U

2
F2 Kn

dx (5(N N) + 10(Tl+ T
2

) + 12 (- U ))

(63)

-3Kn [z(-( N ) - 7(T 1 - T 2 )

d 3(1+ N2) + 6(T1+ T2) + 842 (U 1 2 ))]

(64)

2Kn[ (2(N 1 - N 2 )- (T 1 - T 2 ))

where

--I, = 4- BB 4A/rr -
1 2 1

= 1 (4+ 1)

Re = Kn)
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and Kn = X/d. Define

N+ + N N 
=

N1- N2

r+- = tL + L t t=t1-t (65)

V+= V1 2 V_ = V1 V2

where U. = 'T v.. As previously indicated, only two of the three

equations (60) to (62) are independent. The six equations that

Shankar [ 12] used to study condensation at a liquid-vapor interface

are utilized in this work. With the aid of the above definitions, we

have

2N + t + 2Tv, = B1 (66)

N+ + t+ -F 4v = B' (67)

7t -2N = 2B- (68)
d - - - r -3

d(2N + 3t + 2rr) = 2/3 Kn v rx + Kn v (69)

d 3-(5N+ + 10t+ + 24 ) = -2/3 K3(7o)
d-(5N++O + 6t+ + 2 4v ) = -2/3 B 3 (70)

d+- Kn
d (3N+ +66t+ +16) - (3t -B (71)
d~ + -Kn -3

where equation (68) is found by combining equations (58) and (60). It
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should be noted that equation (68) is exactly q(1) = constant where

q (heat flux) = q(1)e + .* .

The solution to the above equations is

= De-A + Ee+AX + 5
t = De +Ee +

5

2B3 - 1 /-2 DEf

v_ = 3/2 E / e x _ 3/2 D e-Ax

B-11 ---1 --

- B1 B3 4D -Ax 4E +Ax
v- + - e - e
+ 2n 5~ n n

N = 7/2 D e + 7/2 E e - 3/10 B3

+Ax+Ax

(72a)

(72b)- e
MT

(72c) '

(72d)

(72e)

_, , _

N -'-cr~+ =B -- ++3D(2 -x
+ 2 1~- (ullSKn \.. er

(72f)

+ 3E ( - 2 2)+ eA

where A = I K and D, E, and ac1 are constants to be deter-

mined. By using the definitions given in (65), we find that equations

(72a) to (72f) can be written as



2B' x
al - 3/10 B3 + Kn (7/2 + 24 ) D -Ax

vTh0 

+ ( 7 / 2 -24 Ee 

ZN2 = ' a+ 3/10 " +2 =2 - 1 B3
3 x

15 Kn
+ ( 24 _ 7/2)D e- AX

'T7V - /
(73b)

- (7/2 + 24 )E e+Ax
/-(,Ore

2t = a 1 -
1 

2B3 x

1 5Kn
+ (1+ 6 -)D

JViT i0

-Axe +Q(1 .6 )EeAX

3

a 1 15 Kn
3
5

( 6

' I OT
- 1)D e Ax - (I+ 6 )EeAx

(73d)

B1 B3

2v= 2n +1 Zn Sn

B
2

2v =2T

3/2 -)D e Ax

B 3

5TT r) 3 TDe -Ax~ -T 2 2 TD 

Application of the boundary equations (57a) and (57b) to equations

(73a) to (73f) yields

-2AN = B - 01 - 3/10 B3 +(7+ 24 )D ( 2
2 3 2VI10T2

24 )E

/Io n
(74a)
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B-?. 1= 2 

(73a).

2t =
2

+B-'
5

(73c)

_(4 3 5 Ax
- (~ ~ 2 z ) Ee

(73 e)

23 e 2r AxF~-)E e
(73f)

4+
1TT



0 = - +3/ 1 0 B+
2 1 3

24

V IOT

7 2)- A 7
-T)D _( -

42

2B"

+24 Ee+A+ 3j, -0 ) (15 Knb

(74b)

+ (1 + 6 )D

1 15 kn

B1 B3

0= B3

0 = + _
2n 51T

3
5

4+
Tr

+( 6

3 15 
T2 2 D

1)De
-
A - (1+ 6 )Ee

A

·r f T 

( 4 _ ) -A
-rT2 

These six equations can be solved for the unknown constants

B3, D, E, and z.
3,

Let D = D'e /2
Let D = D'e and E

(74d)

(74e)

(74f)

B', B 2 ,
I 2

-A/2= E'e .Then:

AN 24 sinh A _
VIOT 2

-132 .-132 sinh - 4
5/ TO 2

4 cosh) + AT( 9 sinh2 I/ Th

A 8
cosh - -

sinh A/2
Kn

2 + 14 cosh

6 cosh A/2
5 Kn

(7 5a)

D' = E' =

(7 5b)

-ZAT =
B"

1 5
+ (1 -_' 6E/ 1 T (74c)

B3IB 3

( 2 + 2 I 152 Kn ) T

-132 . A A 8 sinh A/2 6 cosh A/2
sinh - - 4 cosh 2 

2 2 / Kn 5 Kn5,/107 T

- ( 4 +3 )EeA
T1 21 'ITT )



1 (1 + 15 1 ) B3, + 2D' cosh Atl= 5j+15 Kn B 3 '
+ 12 D' sinh A+. sinh-

V-T5 F

-t11
B

3

B -= 3
2 1

+ 9D' cosh A

+ 16D' cosh + 6rr / D'
2 Zn2-:T

Now, it is possible to examine the two limiting extremes Kn -'0

For Kn -0, we have

B' = -1.66 AP 
1

B =

AP = (AN + AT)

- /i -(. 83) AP

B' = -AP

B--' ' - 03

and for Kn -'m, we find that

BI
1

= -2AN - AT

1 f (-Z A N-
1 4 rr (

B- = -A P

7
"= AN -AT .
3 2

-AT)

43

(7 5c)

60D'

/ ,,,
sinh A

2

B1 = 2 -
1 5B3

(7 5d)

sinh
2

and Kn - -

(7 5e)

(76a)

(76b)

(76c)

(77a)

(7 7b)

(77c)
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When Kn O (free molecular limit), the mass flux B1 to O(e) agrees

exactly with the Knudsen-Langmuir expression. In the continuum

limit Kn -0 the mass flux to 0(e) becomes independent of the tenmp-

erature difference and depends only on the pressure difference.

This result agrees in form with Fuchs [ 14 1 and Shankar [ 12 1.

Finally, the behavior of the density and velocity in the flow

field between the two plates is established. The number density is

defined by

n = 1/2(nEl + n2E2 ) (4 5)

In terms of perturbed quantities, (45) becomes

p = 1 + (1/2 N+ + v _)e+ ... (78)

where p = mn. From equations (72c) and 72f), one finds

Bp1 1 3 x ( 12 3 )D 5 -Ax/2

(79)

+ 12 +3 2 ) D- Ax/2 ] +.

A/2 -A/2
where D = D'e , E = E'e

AN a 3 2 1
'+ AT +

E + 15 Kn -5 15 Kn
-132 A Aih A 8 sinh A/2 6 cosh A/2-sinh-- 4 cosh - --

52 2 Kn 5 5bKn
(7 5b)
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and B' and aol are given by (75c) and (75d) respectively. Equation

(79) at the cold wall can be reduced to

A 5
PK~o3 Ds)+5Z0 B$I + (._ 3 g;, 7 D' cosh A + 3J~5- D' sinh A ¢ +''''P 20 T 2 2 r 2/ A)

(80)

At x = 1 (cold wall), we find

Kn - 0

(8 la)

Kn - o

- 1 1
p = 1 - ATAN +. .

Similarly, for x = 0 (hot wall), there results

' ~~ 3
P = I + 1 ) T- + 7 cosh A +p I - 2Z0 15 Kn 2B2

48 A
sinh-

Vf IO 2z

- 3 A ; sinh ) D'] e + -..

and the limits are

-152 (7 + 5)
P -I 8 + 6 )

-l i + 6
J~; 3)

(8lb)
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Kn - 0

AN( 11+ 90 )+ AT(7+ 30)
/- /ITT ThT

p =1- - 8 6)
!5 8 6 +

or

p = 1- AN(27. 07) + AT(12. 3 6) + (82a)
39. 42

Kn -- 

p = 1 - N + (82b)

The mass velocity is

-e -2
nlUlE1+ n

Z
u
2 E 22 1 r n1 2 1 e (83)

u = ~- e
- u

z /
B

2 (83)

nlEl+ nZE2

and in terms of the perturbed quantities u becomes

-1 2 - 1
u = N -t(N + r) + +) ''' (84)

where N_, t_, and v+ are given by (72e), (72a), and (72d) respective-

ly. At any point in the flow field between the two plates and at x = 0

or x= 1, (84) reduces to
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U = B e + ... (85)

The limits for B 1 as Kn - 0 and Kn - m are given by (7 6 a) and (77a).

The density correction to O(e) at the hot wall, equation (82a),

depends.on the relative size of AN versus AT. Both AN and AT are

negative by definition. If the density correction to 0(e) is greater

than zero, then the flow is density dominated (AE< 2. 19); but if

the correction to O(e) is less than zero, the flow is temperature

dominated AN > 2.19).

From equation (85), it is apparent that the small parameter e

is related to the mean velocity u which results from a small deviation

from equilibrium. The fact that u is constant to O(e) is not surpris-

ing since

-- (1) 2 -(2)

= (1) + 2- (2) +
u u + u +

and p u = const. Therefore, we have

e(1) 2 -(1) -(1) +(2) 
u(+ £+u + = const.

which implies

(2) (1) 
U = c 2 - P u
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but p ( constant (as previously demonstrated, Kn - 0) so

-(2)
u) constant.

The characteristic Re, Equation (40), is based on a velocity

U = iTi which is of O(a) where a is the speed of sound. Re can be
II

written as

P IRTI d p ud Re
PII IId PII~ 1 Repu

Re = (86)
11 IR IzI u

II

where y = ratio of specific heats, Mu= Mach number, Re is
Pu

Reynolds number based on the mass flux pu at the cold wall and the

mean velocity u is small. For extremely small kinematic viscosi-

ties v, large d, or a combination of both, Re could be large when
Pu

u is small.

When u is not small, the full non-linear equations must be

solved.



Chapter 5

NUMERICAL SOLUTION TECHNIQUE

5.1 Solution of Separated Boundary Value Problem as Initial

Value Problem

The six moment equations to be solved for the unknown

parameters nl , T1, 2 ul 2 form a system of first order ordinary

non-linear differential equations. Because all dependent variables

are present in each of the equations they are completely coupled and

must be solved simultaneously. Although three of the equations are

integrable, no method was devised to simplify the solution by using

the mixed algebraic and differential equations. Attempts to reduce

the number of dependent variables by the introduction of groupings

were unsuccessful and no feasible analytic integration technique was

developed.

Numerical solution of such a system of equations can be

accomplished by a number of methods if the values of all the varia-

bles are prescribed at one of the boundaries, i.e., if it is an initial

value problem. With the present problem three of the boundary

conditions are given at each surface and as such represent a

separated or two point boundary value problem. Solution of this

type of problem generally involves either quasi-linearization as used

49
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in the last chapter or reduction to an initial valueproblem. Because

the free molecular limit allows an obvious choice of initial values

which systematically vary at higher Reynolds number, the latter

approach is used in order to solve the problem for strong non-

equilibrium conditions.

The numerical solution begins at the first plate (x=O). Here,

values of nl, ul and B1 are prescribed and the values of the other

three variables n
2

, u
2

and B2 are assumed. Next, the derivatives of

the six functions are evaluated at the wall. With these derivatives

known, the six equations can then be simultaneously integrated to x+s

by using a fourth order Runge-Kutta scheme. Here s is the normal-

ized step size. From this point the process of evaluating the deriva-

tives and of integration is continued to x = 1. At x= 1the integrated

values of n 2 , u2 and [2 are compared to the actual boundary conditions

prescribed for the problem. If the integrated values are not suffi-

ciently close to the boundary conditions new values of n2 , u2 , and 82

at x = 0 are calculated and the equations are integrated again. The

iteration for the correct values of n2 , u2 , and $2 at x =0 continues in

this manner until the boundary conditions specified for n 2 , u2 and

at x = 1 are satisfied. Since the six parameters aie evaluated at

each step of the integration by using the definitions in the previous

chapter, the values of the physical variables of interest are deter-

mined throughout the flow field. The specific details of the

integration method are briefly outlined in the next two sections.

Z-3
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The complete computer program is given in Appendix C.

5.2 Evaluation of Local Derivatives

To simplify the mathematics of the problem it is convenient to

define the function Yj which represents the six dependent variables so

that

Y n (x)Yu1 1(X)

Y -u (x)
2 1

Y3 81(x) (87)

Y n (x)

Y5 = uZ(x)
, (x)

Y6 -

Furthermore, it is desirable to leave the six independent moment

equations in the differential form

Fij(Yj)Wj+ Gi(Yj; Re) = , i = j = 1, 6 (Appendix C) (88)

where the derivative W. is

dY.
d J w. j = 1,6

dx 3

and F.. and G. are algebraic functions only of the six variables Y.

and the Reynolds numnber.

The subroutine DRVTV (Y,W,Re) is used to evaluate the local
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derivative W. for input values of Y. and Re (Appendix C). To do this
J t

DRVTV calls another subroutine DSIMQ which solves the six equa-

tions (88) simultaneously.

5. 3 Fourth Order Runge-Kutta Integration

A number of numerical integration techniques were considered;

however, because of the simplicity in the present application a fourth

order Runge-Kutta integration scheme is employed. For a system of

two first order ordinary differential equations

gl (X 'Y Z)- Z = g2 ( x Y , Z)

the fourth order Runge-Kutta integration for step size s is given by:

Yn+l (kYn+ ( k+ 2k 3 + k4 ) + 0 (s
5
)

Zn+l n 6 ('l1+ 22+ 2£3+ q4) + 0 (s 5 ) ,

where,

k = s gl(xnYn, Zn)

1 = s g2 (xn' Yn Zn)

1 1 1
k

2
= sg

l
(xn+ Z s, Yn+ 2 kl' zn 2 1)

1 1 1
12 

=

sg2(Xn+ 2s yn 
+

Tkip z + ~~~~n 2 n l)
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3 s= g(X y+n+ k2 z +3' 2 n 2
)

3 = sg2(Xn+ s, Yn+ 2 k2 ' zn 2 2 ) '

n~ n 2 3)
'

£4 = s g2 (xn+ s, Yn+ k3 zn+ ) 3)

This system of equations is now generalized to allow integration of

six simultaneous equations.

Equation (88) can be rearranged to

Y, = -(F )iji - gi(xYj)3 ) ij 1 j
i=j = 1,6

where the value of gi is obtained simply by calling DRVTV (Y,g,Re).

Y. at x+s is found from
1

1 5
Y.(x+s) = Yi(x) + (kil +2(k+ilki3) + k.i4)+(s

1 1 6111 i3 O

kiK1

ki2

ki3

ki4

= sgi(x, Yj)

- I 1
= sgi(x + y-s, Yj+ 2 kjl )

1 1
= sgi(x + 2s, Y. + k.)gi( , Yj+ kj) i 1,

= sgi(x +s, Y.+k.3) i =3 = 1,6.
J j

(90)

(91a)

(91b)

(91c)

(91d)

To obtain explicit values of the k's in the-program, use is made of

(89)

where
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the flexibility of the subroutine DRVTVo At point x values Yj and

W (Yj) are known, hence

k = SWi(Yj)

By defining

z. = Y+ +k
i1 i 2 iT'

the subroutine DRVTV (z,W, Re) is called to obtain

1 I
Wi(Y.+ k.j ) = gi(Yj + k. 1)j j 2 ji

hence

ki = sWi(Y+ k)
i2 i j 2 jil

Similarly, the remaining terms ki3 and ki4 are obtained by success-

ively setting z i equal toY + 2 ki
2

and Yi+ ki 3, and calling for
1 I 2 i2 1 i3'

1
Wi(Y + kj2) and Wi(Y + kj3). Once these are known Yi(x+s) is

obtained from equation (90). The step size is chosen to be 1/Re or

0. 11, which ever is smaller.



Chapter 6

RESULTS OF NUMERICAL SOLUTION TO THE

NON-LINEAR TWO PLATE PROBLEM

In this chapter the two plate problem is solved in certain cases

for strong non-equilibriunl conditions by using the numerical. integra-

tion procedure discussed in the last section. Three cases are

considered:

Case I, TI(d) = 1/2 TI(0), nII(d) = 1/2 nI(O) (92a)

Case II, Ti(d) = 1/10 TI(0), nII(d) = 1/2 nI(0) (92b)

Case III, Tii(d) = 1/2 TI(0), nII(d) = 1/10 n (0) (92c)

For all cases, u 1 (0) = u
2

(d) = 0. Case I is dealt with in depth

whereas the other two cases are discussed only to illustrate certain

differences that occur at low Reynolds number. For large Re, all

cases considered behave in the same manner. The reference values

are those at the hot wall.

The direction of integration is opposite to that of the vapor

flow. This is analogous to the situation that exists in numerically

solving the one dimensional viscous shock equations, Von Mises [ 153.

In the shock problem the direction of flow is supersonic to subsonic.

Because a saddle point exists on the subsonic side of the shock and a

55
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nodal point on the supersonic side, the direction of integration is

always taken to be subsonic to supersonic. An attempt was made to

determine if such singularities existed at the hot and cold walls but

due to the complex nature of the equations no definite results were

obtained. Despite this, the numerical procedure employed to solve

cases I, II and III simply will not march forward from the hot wall

without eventually blowing up at some point in the flow field for

Re > 2. Therefore, the cold plate is positioned at x = 0.

The six moment equations used in the numerical analysis are

equations (42), (43), (50), (51), (52), and (53). These equations

along with the expressions for density (45), pressure (46), T (47),
xx

heat flux (48), and the evaporation coefficient (49) give a complete

picture of the flow field subject to the boundary conditions pres-

cribed (54).

As pointed out before, each case is solved as an initial value

problem. A one dimensional array, ALF, contains six elements

corresponding to n 1 (0), Ul(O), 1(0), n
2

(1), u
2

(1), and B 2(1).

These are the boundary conditions specified by (54) and either (92a),

(92b), or (92c) depending on the case considered. Note that the

subscript (1) and (2) are reversed when the cold wall becomes x = 0.

YO(4), YO(5), and YO(6) are the initial values guessed at x = 0 for

n 2 (0), u
2

(0), and 2 (0). With ALF(1), ALF(2), ALF(3), YO(4),

YO(5), and YO(6) given and a Re specified, the numerical integration
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proceeds forward from x = 0 to x. = 1 in steps of 0. 01 by using a

fourth order Runge-Kutta scheme (Appendix C). For case I,

ALF(1) = 1/2, ALF(2) = 0, ALF(3) = 1 at the cold wall (x = 0) and

ALF(4) = 1, ALF(5) = 0, ALF(6) = 2 at the hot wall (x = 1). Note

that Y1 to Y6 (equation (87)) is defined in computer language as Y(J),

J = 1 to 6. If the values for Y (4), Y(5), and Y (6) at x = 1 are not

equal to ALF(4), ALF(5), and ALF(6) within a specified error,

0. 001, then an iterative scheme is devised to change the initially

guessed values YO(4), YO(5), and YO(6) until I ALF(J) - Y(J)I <

0. 001, J = 4, 5, 6. The details. of the iterative scheme are given in

Appendix C.

The integration step size was changed to see if it had any

effect on the result. Two schemes were tried: D = 0.001 across the

entire flow field and D = 0. 001 near the two walls and D = 0.01 in

the rest of the flow field. The numerical results were essentially

unchanged from those given by using D = 0.01.

Figures 3, 4, and 5 indicate how n2 (0), u2 (0), and 02(0) change

as Re increases from 0.01 to 100 for case I. Similarly, Figures 6,

7, and 8 show how n1 (1), ul(1), and B1(1) behave over this Re range.

It is worthwhile to note that n2 (0), u2 (0), and %2(0) approach limiting

values 0. 6702, -. 4105, and 1. 553 respectively for Re > 10. nl(1)

(Figure 6) is a bell shaped curve which has a peak value of 0. 835 at

Re = 1.8 and approaches 0.646 as Re - 100. u (1) (Figure 7) has a
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maximum value of 0.405 at Re = 3.0 and decreases to 0.37 at Re =

100. Finally, ,1(1) (Figure 8) approaches 1.73 as Re - 100.

The behavior of the mean vapor velocity u(x) for case I is illus-

trated in Figure 9. At Re = 0.01 u is constant. As Re increases

from Re = 0.01 to Re = 1.0, the curve for u (x) has an essentially

constant positive slope from x = 0 to x = 1. Physically this means

the flow accelerated from the hot wall to the cold one. As the

magnitude of Re becomes greater than one a point of inflection begins

to appear in the u(x) curve. Finally, for Re > 6 the curve u(x)

becomes concave upward except at the cold wall where it is concave

downward. Physically, this corresponds to a flow which accelerates

at the hot wall reaches a iriaX;iil.uI-,i ValUt~ , ,d ihUt . ..e deceCiates

toward the cold wall. At x = 0. 05 the flow starts to accelerate again.

u is negative because the direction of integration (cold to hot) is

opposite to that of the vapor motion. Velocity curves are plotted up

to Re = 12.2. Figure 10 contains three of the u curves shown in

Figure 9 replotted on a scale comparable to that used in later

figures. Figure 11 and Figure 12 indicate how p (x) and B(x) behave

for Re = 12.0.

The curves for ul(x) and u2(x) are illustrated for Re = 11. 7

in Figure 13. Similarly nl(x), n2 (x) and Bl(X), 8
2
(x) are plotted in

Figures 14 and 15 respectively for Re = 11.7. These figures

indicate the existence of two regions of rapid change: one at the
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cold wall and the other at the hot wall.

Past Re = 12.0, it becomes increasingly difficult to use the

method of integration discussed previously. However, at Re = 12. 0,

n2 (0), u 2 (0), and B2(0 ) have almost reached their limiting values, i. e.,

their values remain unchanged as Re -o . This fact allows use of

the integration technique of shooting-splitting. The forward marching

scheme used is a fourth order Runge-Kutta with an integration step

size D = 0. 0001 up to x = 0. 005 and D = 0. 001 past0. 005. The

integration process is begun at x = 0 for Re = 100. 0 (Kn = 0. 0125 by

(41)) and the values n1(0), u1(0), B1(0), n2(0), u2(0) and B2(0) for

Re = 12.0 are used to start the integration. As the integration

moves forward u2 will eventually go to zero at some x <'I1 and the

integration process is stopped at that point. Next, the process is

started over at x = 0 but for a value of u
2

(0) that is 0. 01 greater

than u2(0)R = 12. 0 The new curve for uZ(x) eventually becomes

greater than one at some x. u2= 1 is used as a convenient cutoff

point. If one takes the average between these two values for u2 (0)

and repeats the process either an up curve or a down curve will

result. The averaging process is repeated until u 2 (0) for the up

curve and down curve match to five decimal points. Then at a point

x = .15 (arbitrarily selected, Figure 16), the values of Yi for the

two curves are averaged and a new curve is found. This curve

either goes up or down, but more importantly, it extends further
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out into the flow field than any of the curves starting at x = 0. If this

new curve is up for the sake of argument, then its values of Y. and

those of the down curve which starts at x = 0 are averaged at x = 0. 15

and a new up or down curve is calculated. In this manner the flow

behavior for large Re can be found (Figures 16, 17, 18, 19, 20, 21,

22, 23, and 24).

Each point at which u
2

(x) = 0 can be thought of as a position of

the hot wall and the corresponding value of Re is found by multiplying

x · 100 since Re is linear in distance. Furthermore, the shooting-

splitting technique can be carried out past x >1 and the resulting Re

would be greater than 100. From Figures 18, 16, and 22 the various

values of r 1 , U1 , and 1 corresuponding to u 2 0 are plotted on

Figures 6, 7, and 8. Note that x = I corresponds to Re = 100 in the

scale used in Figure 16 to Figure 24. However, each Re corres-

ponding to u 2 (x) = 0 can also have x = 1 just by redefining the scale

since it is linear.

Figures 16 to 24 indicate that an equilibrium situation is

attained at x = 0. 2. Past this point u = U1= u
2

, n 1= n 2 = n, and

B1= B2= d = 2T as the limits in the above figures illustrate. As Re

becomes large the regions of rapid change become thinner (Figures 9

and 18). In the large Re limit the flow field has the following

behavior: the velocity u accelerates from its values at the hot plate

(x = 1) to an equilibrium speed and then decelerates from equilibrium
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as the vapor approaches the cold wall. Very near this plate u

accelerates again; both the density and temperature at x = 1 decrease

to their respective values in the equilibrium state whereas near the

condensing surface the temperature decreases and the density

increases to a peak value and then decreases slightly. For Re -'A,

the total enthalpy (Figure 25) decreases slightly at the hot wall and

then approaches equilibrium. Near the condensing surface, it

decreases strongly. This flow pattern for large Re is like the result

found by Collins and Edwards [ 16 ]1 except they found H to be constant

at the evaporating surface. In the low Re limit (Re = 0.01) u p, B,

etc., are found to be essentially constant.

in Figure 26 the velocity u is plotted for case III (92c). For

Re = 0. 01 u is constant. In the range of Re between 0. 1 and 1. 0 the

vapor velocity u decelerates over most of the flow field and then

accelerates very near the cold wall. This behavior is completely

different from that of case I in the same Re range. For Re > 1.0

the u curves follow the same pattern as those in Figure 12 (case I).

Furthermore, n 2 (0), u2(0), and B2(0) approach limiting values around

Re = 14 and the shooting-splitting technique can be used.

Case II (92b) has boundary conditions exactly opposite to those

of case III. The mean velocity u for case II (Figure 27) exhibits the

same behavior as u in case I (Figure 9) except that there is no

acceleration at the hot wall.
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Finally, from equation (86), there results

p /rRT I d
Re = W u I I

pu yvyRTI I
= Vy M Re

U

where u = mean velocity. Since M - 0(1) and y = 5/3, Re - O(Re).
u pu



Chapter 7

CONCLUSIONS

The two plate problem is solved for a monatomic vapor

composed of Maxwell molecules. Lees' Imoment method is used to

obtain a set of six non-linear moment equations whose solution,

subject to the boundary conditions of this problem, is continuous

over the range of flow conditions from free molecular to continuum.

To obtain an analytical solution to this problem,. small devia-

tions from equilibrium are considered. A first order perturbation

analysis is used and the mean velocity u is the small parameter in

the problem. For Kn oa, the flow properties and the vapor

velocity are constant between the two plates and the value of the

evaporation coefficient is one. When Kn -0, the flow is either

density or temperature dominated depending on whether AT/AN <

2.19 or AT/AN > 2. 19 respectively. The evaporation coefficient in

this limit is 0.83. The Re based on the mass flux at the cold wall
pu

can be small or large depending on the magnitude of d/v.

The two plate problem for strong non-equilibrium conditions

is solved as an initial value problem. The direction of integration

is opposite to that of the vapor motion. Three cases are considered.

For Re -0 the vapor properties and velocity are constant across the

88
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flow field. As Re "' , two regions of rapid change appear: one at

the hot wall and one at the cold wall. The flow accelerates at the hot

wall to an equilibrium velocity, decelerates from equilibrium to a

local minimum velocity as it approaches the cold wall, and then

accelerates again. The vapor temperature and density decrease at

the hot wall to their respective equilibrium values. However, at the

cold wall the vapor density increases rapidly, reaches a peak and

then drops slightly whereas the vapor temperature decreases.

Finally, the total enthalpy decreases slightly at the hot surface to an

equilibrium value and then drops sharply at the cold wall.
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APPENDIX A

3
DERIVATION OF EQUATIONS OF TRANSFER FOR Q(ci) = mcj

As previously discussed, Maxwell's inverse fifth power law of

molecular repulsion is used in evaluating the collision integral. For

such molecules the collision integral becomes

AQ = /(ml+m2 )K Jjffl J dcdc1 (A. 1)

where
O 2n

J S 5 (Q'-Q) de a da (A.2)
o o

and a and e are geometric parameters describing the collision

process. The description and interpretation of the parameters

appearing in equation (A.2) and the subsequent development have been

treated by a number of authors. For details the reader is referred

to the work of Lees [ 9 1 whose nomenclature and methodology is

adopted in this work.

For the monment of interest the difference in Q resulting from

a collision is

= (c 3 j(c (A.3)

To express Q'-Q in terms of c., use is made of the expression for c.
J 3

92
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originally developed by Maxwell ['91,

2 2V 2
c; = c+ (c 1-c) cos (0'/2) + V - (c-c) sin ' cos (e+ W k)

(A. 4)

where 8', e, and wj are angles in various planes which describe the
jk

binary collision. By substituting this expression into (A.3), Q'-Q

bec omnes

Q'-Q 2 2 ,2 2 23c a + 3c a' cos e' + 3c.a + 6c.aa'cos e' + 3c.a' cos 
m j j j J j

3 2 2 2 ,3 3
+a +3a a' cos e' + 3aa' cos e + a os e (A. 5)

where

a = (cl- c)j cosZ(8'/2)

1 2 2
a' = A V - (Cl-C) sin 6'

e'= e + Ujk.

After placing this expression for Q'-Q into equation (A.2), integration

over e is performed first. It is noted that terms proportional to odd

powers of cos me or sin me (m t 0) integrate to zero over the 2n

lilmit hence terms involving cos e' and cos e' integrate to zero.

Using the fact that integration of cos (e + Wjk ) is rr and rearranging,

Q'-Q
the integral of over e becomes:
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Z~

(c3 - c3j)de = Zn (cl-c)j j ( /2)
O

[cj( 2 (Cl-c)j - V ) + (cl+ c)j(Cl C)j sin i'

- (l-C)[ (-)j _ - v] sin20 ' cos2 2 (6a)

Since this expression mnust be symmetrical with respect to the probe

and colliding gas molecules, an equivalent statement of the bracketed

term in equation (A. 6 a) is

{ }= +)jF cjcjl+ c ] cos (6'/2)

-=4 [ cj( 2 (cl- - v2 ] + (c+cl))( Cj -c)2 sin
1 r 5 2 3 cVcJ- 2 j

5 2 3 2
- (c-c1 )j 2 ( 1-c)j 2 V2 sin ' cos (A. 6b)

To obtain symmetry in the expression for J the bracketed terms in

equation (A. 6 a) and (A. 6b) are summed and divided by two to yield

m +C)j 3 ¥2 9 ] 2 i 2
J = (c 1 + C - (c 1 -c)

1
J jr sin 0' a da . (A. 7)

0

Maxwell has evaluated the integral in 6quation (A. 7) and the result is
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0
A 2 = n X sinZ0' a da = 1.3682 . (A.8)

Thus, the equation for J is

1 329 (c 2
J = 4 m A2(c 1

+ c)j[ 1- c)j ] (A 9)

To allow physical interpretation at a later point in the develop-

ment it is convenient to express V 2 in terms of thermal velocities

since the mean velocity of probe and colliding particles are identical

3 3
2 2 2 2

V = (C (C l- C) = cC) (A. 10)
i=l i=l

In making this substitution the collision term for a single component

gas may be written as

AQ = 4 A22mK JJff 1 (C
1
+C) [c 2V - (CI-C ] ddc ,1- (A. 11)

Evaluation of the integral using cj= C.+ u. yields

1 2 3 2 2 2 2)]
AQ mnA /2mK { 2[ CljC( + + 2uj +C

4 [ Clj3+ j

.+ C +2u. (C C 2j (A. 12)
i j i i 
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Again, calling upon the symmetry between probe and colliding

particles, there results

1 2 3 2 9'c3 2 1C.
AQ = mn A ZmK[ C.C

2
+ 3u.C - C - 9u .2 22 2 j J J

(A. 13)

To simplify this expression use is made of the equation derived by

Maxwell for viscosity based on a local full range Maxwellian

velocity distribution

kT

- A2 22 mK2

(A. 14)

With this result the collision term becomes

AQ = p P[ C.C2/2 +u. C C3- 3u. 2 .
J J ' 2 j j jj

In terms of the shear stress and heat flux it may be rewritten

AQ = - j + 3uj.jj 23 ] 
P i i j 2 j

(A. 15)

(A. 16)

The corresponding moment equation is

a [mjfc, d] +- [m'ffc.cdc ] ' mf . 1 (A ' u. ..- 17)at J aX. 1 J =~ 11 4 J J JJ 2 j
(A. 17)



APPENDIX B

INTEGRALS USED TO EVALUATE MOMENT EQUATIONS

, e- 2/ f d = -1 1 + erf
_

(B. 1)

c

_a)

-c2/B
e -

z

/ dg (B.2)

.c 2 - Z/S/ 

_ co

c 3 - 2/ B

co

1= I[
4

2

1 -cZ/¢
- T ce

(0 + c ) e

3 8] [= ET I ro 12 ,
+ rf( C )] [c 3 ]-c 2

(B. 5)
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4e15 /Q2 dQ
~ ~c;) Pd~

(B.3)

(B.4)

r 3 ]' [1 + erf ( 7-- ) ]



APPENDIX C

COMPUTER PROGRAM

The six moment equations that are solved in the subroutine

DRVTV are:

continuity, i = 1

(u 1 E1 + /TT

du

+ l 1E 1 ' dx

dn1

X ) 1
dx

du.

n2E2 d

dnx
( U2E2- 2/- X2) -

dx

+ 1/2
nX!

Try, XI

- 1/2 n X
2

. IBX2

dB1

dx

x-momentum equation i = 2

+uI EI+ uIXJ75/TT

dnl

dx

i nE1 d u 1

-X +2 undA. I I 1 1 )d
. . ~~dx

_I+ ([ /2 + UzE--2
dx/ + uE-

dx

+ (2u2 n2 E 2Z 2n 2 X2 T)

dB2 
0

-d O
dx

(C. 1)

+nE

+ 2
d n)

dx

du2
2

dx

2 2
2

d 2

dx
= 0 (C. 2)
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([ -l/z
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x-momentum flux, i = 3

[ -3 1 2 dxI
[(U1 +(5 1 B)+ Iu ) 1 +u)X

dx

+ [3nl u 1 E 1 -t 1- 5 n l EI+ 3n U1 u I 1 II
dx

+ [ 2 nl U-El+ nl |- - i )

+ -- 2 3--
3 n 2 u 2 E2 + n2 BE 2 -

2Re - 2 -- 2
3 n 2n u - 2B2+

-- -2 dn
T (8T + u 2 )X z -

dx

3- ]2 Z du
2

3- --
3n2u1 2XT2- d

+
n 2

u E
2

-

X 2_
dx

*-(nE
1

3
1
E+-n 2 T2E 2 ) = (0

dBx

dx

. 3)

y-momentum flux, i = 4

F-- /I
L (u 

1
E

1
+ -X )

dnI
1-
+ nl 1E 1

dx

dxi

+ [% 2 (U 2 E 2_ - --X 2 ) d
dx

duI

dx+ [ n1u1E 2 1
dx

+ n282E 2

du2 2
d + [ -- E 3dx

ZRe --- 2 +1 ---
2 )] = 0

(C. 4)

/1l]A· j
d ,

dx

dB2

dx
x2]TTx2
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x-energy flux, i = 5

[5 1+-1+ U1 E_+ -3 7 -- ) ]dnll + l +T- ,l ul ,xli _
[ 1 1 + 

dx

[n r g1+4 U1 )E1u+ 4.1-- A 3
dx

5 -
[ 1 0 2+ 2+ 4u 4)X j l+ 4 2i u )rr2

1 11 +
d x

[ -2 8 + 4u - 2- -3 7d[ $2~1 4w2) + 4:: 

[2( 02 2+ 2 U2 2 TrU 2 E2 Xr 2 U2 )X2+ddx d r

22 22 -- 3 2
+

u2 d
n (68 + 4u

2
)X

2
+ 4n Z du 2 +8 

4Re n [ 2B
3

- U 2Bz+n1ln 1 2 2 2 2] 2 5)

dx

dx

[ 3nl4 -(U1+ 4u )E1 + -n ( 1+ 1)X1]
d l

+

dx
2' 

k41 3u 1 I+ )El+ -T (uI dx )I

+ 4- 4 - 0 )X U+
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3 -- 2 -2- -- 4--3 5- dn,2+ 3u B +-4U E 4 ( X 2 +2 )X 2 ] +4 n 2 (4U2 +2 4 A2 2+2 T B 2 )X2 
dx

--2 -4-2 - du 2

n. u2(4 u2+ 6)E02)E2 2 T u2 B 2)X2I dx

Bz d_
[ 3;n2 ( E + u2) 2- 3n2 2SXr2 ·]- + 2Re n [ + 2B

32 ( 2 2 2 2U2 2 dx .

-[ (nlBEl+n
2

BzE
2 )

]
- nlB

1
(uE, E+ x 1 )

3- -
-4 -2 2( E 2 T X2 -)] ° (C. 6)

where

E 1 + erf (U 1 /1)

X2 1- eU2 e2
2

n =2(nE+ n 2 E 2 )

nfu E + n uE +E n X
lu =p --

nIEI+ n2E2

The complete computer program is listed on the following

pages.
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C MAIN PROGRAM--INTEGRATION FROM COLD TO HOT WALL

IMPLICIT REAL *8 (A-H,O-Z)

REAL *8 K,L,M

DIMENSION ALF(6), YO(6), W(6), B(3), K(6,4), Z(6),

Y(6), DYO(3), DY1(3), YOSTO(6), Y1STO(6), C(3,3),

L (6), M(6), DYA (3), F(6, 6), G(6)

INTEGER CTR1,CTRZ

CALL $TIME$ (45)

3 READ (5, 10, END = 9999)(ALF(I), 1=1, 6), (YO(J),

J = 4,6), RE

10 FORMAT (6E12.8)

A - 1. 0/DSQR T (3. 141592D0)

15 CTR2 = 0

20 X =0.0

CTR1 = 0

C X IS THE INDEPENDENT VARIABLE RANGING FROM 0

TO 1

C Y(I) I=1 TO 6 REPRESENTS THE VARIABLES N,U, AND BETA

Y(1) = ALF(1)

Y(2) = ALF(2)

Y(3) = ALF(3)

Y(4) = YO(4)

Y(5) = YO(5)



103

Y (6) = YO(6)

C THE EVAPORATION COEFFICIENT = EVCOEF; THE TOTAL

ENTHALPY = TOTH

CALL PHYSPR (Y,ALF,RHO,U,P,TEMP,TAUXX,

QX, TOTH, B, EVCOEF, &800)

WRITE (6,30) RE, (Y(I), I=1,6),(B(I),I=1,3)

30 FORMAT (1H1,38X,'FLAT PLATE EVAPORATION-

CONDENSATION PR OBL EM '

C///1H, 'INITIAL CONDITIONS RE = ', E12.4, '

Y(1) = ', E12.4,

C'Y(2) = ', E12.4, ' Y(3) = ', E12.4, ' Y(4)= ',

E12.4 /1H,

C21X, 'Y(5) = ', E12.4, ' Y(6)= ', E12.4,

B(1) = ', E12. 4,

CB(2) = ',E12.4, B(3) ', E12.4 ///1H,

'CTR1 X

C D Y(1)', ' Y(2)

Y (3) Y (4)',

C Y(5) Y(6)'/1H, 17X, 'RHO U

C P ', 'TEMP TA UXX QX

TOTH

C EVCOEF' )

60 CALL DRVTV(Y,W,RE,F,G, &800)
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C CTR1 MULTIPLIED BY 100 GIVES THE POSITION X.

C PRINT OUT OCCURS ONLY AT THE SPECIFIED POSITIONS

GIVEN BY CTR1

IF (CTR1 .EQ. 0) GO TO 215

IF (CTR1 .EQ. 1) GO TO 215

IF (CTR1 .EQ. 2) GO TO 215

IF (CTR1 .EQ. 5) GOTO215

IF (CTR1 .EQ. 10) GO TO 215

IF (CTR1 .EQ. 15) GO TO 215

IF (CTR1 .EQ. 20) GO TO 215

IF (CTR1 .EQ. 25) GO TO 215

IF (CTRi .EQ. 30) GO'TO '2i5

IF (CTR1 .EQ. 40) GOTO215

IF (CTR1 .EQ. 50) GO TO 215

IF (CTR1 .EQ. 60) GO TO215

IF (CTR1 .EQ. 70) GO TO 215

IF (CTR1 .EQ. 75) GO TO 215

IF (CTR1 .EQ. 80) GO TO 215

IF (CTR1 .EQ. 85) GOTO215

IF (CTR1 .EQ. 90) GO TO 215

IF (CTR1 .EQ. 95) GO TO 215

IF (CTR1 .EQ. 98) GOTO0215

IF (CTRL .EQ. 99) GO TO 215
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IF (CTR1 .EQ. 100) GO TO 215

IF (X .LT. 1.0) GOTO 217

215 CALL PHYSPR (Y,ALF, RHO,U,P, TEMP,TAUXX,

QX, TOTH, B, EVCOEF, &800)

WRITE (6,216) CTR1,X,D, (Y(I),I=, 6),RHO,U,P,

TEMP, TAUXX,QX,TOTH,EV

CCOEF

216 FORMAT (1H, 14, 1P8E13.4/1H, 11X, 1P8E13.4)

IF (X - 1.0) 217, 5070, 5060

C INTEGRATE Y(J) TO X+D USING 4TH ORDER RUNGE-KUTTA.

217 D=0. 01

C CORRECT LAST STEP FOR COMPUTER ROUND OFF ERRORS.

IF ( (X+D) .LT. 1. 0) GO TO 218

D=1.0 - X

X=I. 0

GO TO 220

218 X=X+D

CTR1 = CTR1 +1

220 CONTINUE

C NEXT EVALUATE THE COEFFICIENTS USED IN

EXPRESSION FOR Y(J)

DO 230 I=1,6

K(I, 1) = D ' W(I)
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230 Z(I) = Y(I) + 0.50 * K(I, 1)

CALL DRVTV(Z, W, RE, F,G, &800)

DO 231 I=1,6

K(I,2) =D * W(I)

231 Z(I) = Y(I) + 0.50 * K(I,2)

CALL DRVTV(Z, W, RE, F, G, &800)

DO 232 I=1,6

K(I,3) = D * W(I)

232 Z(I) = Y(I) + K(I,3)

CALL DRVTV(Z, W, RE, F, G, &800)

C NOW INTEGRATE Y(J) TO X+D USING THESE

COEFFICIENTS

DO 233 1=1,6

233 Y(I) = Y(I) + (K(I, 1) +D * W(I) ) / 6.0D0 +

(K(I,2) + K(I,3))/ 3.0D0

IF (Y(3) .GE.0) GO TO 240

WRITE (6, 1)

1 FORMAT (1HO, 10X, 'SQUARE ROOT OF NEGATIVE

NUMBER Y(3)')

WRITE (6.4) ((F(I,J), J=1,6),W(I),G(I),i=1,6)

4 FORMAT (1XiP 6E 15.7)

GO TO 800

240 IF (Y(6) .GE.0) GO TO 245
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WRITE (6,2)

2 FORMAT (1HO, 10X, 'SQUARE ROOT OF NEGATIVE

NUMBER Y(6)')

WRITE (6, 9) ((F(I, J), J=1, 6), W(I), G(I),I=1, 6)

9 FORMAT (1X1P6E 15.7)

GO TO 800

245 CONTINUE

IF (X-1.0) 60,60,5060

5060 WRITE (6, 5062) X

5062 FORMAT (1Hl, 10X, 25H X GREATER THAN

1. 0, X = ,E16.7)

5070 WRITE (6, 5vu0) (B(I), i=1,3) , (ALF(J), J-4,6)

5080 FORMAT (1H, 'B(I), 1=1,3 = ' 1P3E13.4, 4X,

'ALF(J), J=4,6 = ', 1P3E -

C13.4)

C ITERATION TECHNIQUE: CHANGE YO(4) FIRST,

C LEAVING YO(5) AND YO(6) UNCHANGED; USE THE

C OLD VALUE OF YO(4), CHANCE YO(5), AND LEAVE

C YO(6) UNTOUCHED; NEXT USE THE OLD VALUES OF

C YO(4) AND YO(5) AND CHANGE YO(6). FINALLY

C CHANGE YO(4), YO(5), AND YO(6) SIMULTANEOUSLY.

C REPEAT PROCESS UNTIL ABS(ALF(I)-Y(I)) < ERROR.
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IF ((DABS(ALF(J) - Y(J))) .GT. 0. 001) GO TO

6010

6000 CONTINUE

GO TO 3

6010 IF (CTR2 .GT. 0) GO TO 6020

CTR2 = CTR2 + 1

DO 6011 J=4,6

YOSTO(J) = YO(J)

6011 Y1STO(J) = Y(J)

DYO(1) = (ALF(4) - Y(4)) / 10. 0

DYO(2) = (ALF(5) - Y(5)) / 10.0

DYO(3) = (ALF(6) - Y(6)) / 10. 0

DYA(1) = ALF(4) - Y(4)

DYA(2) = ALF(5) - Y(5)

DYA(3) = ALF(6) - Y(6)

6012 YO(4) = YOSTO(4) + DYO(1)

GO TO 20

6020 IF (CTR2 .GT. 1) GO TO 6030

CTR2 = CTR2 + 1

DY1(1) = Y(4) - Y1STO(4)

DY1(2) = Y(5) - Y 1STO(5)

DY1(3) = Y(6) - Y1STO(6)

DO 6021 J=1,3

II
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6021 C(J,1) = (DY1(J) / DYO(1) )

YO(4) = YOSTO(4)

6013 YO(5) = YOSTO(5) + DYO(2)

GO TO 20

6030 IF (CTR2 .GT. 2) GO TO 6040

CTR2 = CTR2 + 1

DYI(1) = Y(4) - Y1STO(4)

DY1(2) = Y(5) - Y1STO(5)

DYI(3) = Y(6) - Y1STO(6)

DO 6031. J=1,3

6031 C(J,2) = (DY1(J) / DYO(2) )

YO(5) = YOSTO(5)

6014 YO(6) = YOSTO(6) + DYO(3)

GO TO 20

6040 DY1(1) = Y(4) - Y1STO(4)

DY1(2) = Y(5) - Y1STO(5)

DYI(3) = Y(6) - Y1STO(6)

DO 6041 J=1,3

6041 C(J,3) = (DY1(J) / DYO (3) )

C SUBROUTINE DMINV IS AN IBM MATRIC INVERSION

C PROGRAM - DOUBLE PRECISION.

CALL DMINV (C,3,Q,L,M)

IF (Q .EQ. 0.0) GO TO 6070

3-3
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YO(4) = YOSTO(4) + C(1, 1) * DYA(1) + C(1,2) *

DYA(2) +C(1,3) * DYA(3)

YO(5) = YOSTO(5) + C(2, 1) * DYA(1) + C(2,2) *

DYA(2) +C(2,3) * DYA(3)

YO(6) = YOSTO(6) + C(3, 1) DYA(1) + C(3,2) *

DYA(2) + C(3,3) * DYA(3)

GO TO 15

6070 WRITE (6,6071)

6071 FORMAT (1HI, 10X, 29HDETERMINANT OF C

EQUALS ZERO)

GO TO 9999

9999 CALL EXIT

C THE FOLLOWING INCREMENTAL CHANGES ARE MADE

C ONLY IF Y(3) OR Y(6) BECOME NEGATIVE. THIS IS

C DONE IN ORDER TO RESTART THE PROGRAM AGAIN.

800 IF (CTR2 .EQ. 0) GO TO 9999

IF (CTR2-2) 801, 802, 803

801 DYO(1) = -DYO(1)/2.

ITEK = ITEK + 1

IF (ITEK.EQ, '5) GO TO 9999

GO TO 6012

802 DYO(2) = -DYO(2)/2.

ITEK = ITEK + 1
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IF (ITEK. EQo 5) GO TO 9999

GO TO 6013

803 DYO(3) = -DYO(3)/2.

ITEK = ITEK + 1

IF (ITEK. EQ. 5) GO TO 9999

GO TO 6014

END

C SUBROUTINE PHYSPR

SUBROUTINE PHYSPR (Y,ALF,RHO, U,P,TEMP,

TAUXX, QX, TOTH, B, EVCOEF, *)

C PURPOSE - TO EVALUATE PHYSICAL PROPER-

TIES IN THE FLOW FIELD

IMPLICIT REAL -:8 (A-H,O-Z)

DIMENSION Y(6),ALF(6), B (3)

A = 1. 0 /DSQRT (3. 141592D0)

IF (Y(3).GE. 0) GO TO 1000

WRITE (6, 1001)

1001 FORMAT (IHO, 10OX, 'SQUARE ROOT OF A

NEGATIVE NUMBER Y(3) SUB P')

RET URN 1

1000 IF (Y(6) .GE. 0) GO TO 1002

WRITE (6, 1003)

1003 FORMAT (1HO, 10X, 'SQUARE ROOT OF A
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NEGATIVE NUMBER Y(6) SUB P')

RETURN 1

1002 R1 = DSQRT (Y(3))

R2 = DSQRT (Y(6))

El = 1.0 + DERF (Y(2) / R1)

E2 = 1.0 + DERF (-Y(5) /R2)

Xl = DEXP (-(Y(2) ** 2)/Y(3))

X2 = DEXP (-(Y(5) ** 2) /Y (6))

ARX =A * R1 * X

ARX2 = A * R2 X2

Y2S = Y(2)**2

Y5S = Y(5)**2

RHO = 0. 50 * (Y(1) * El + Y(4) * E2)

IF (RHO. LT. 0.0) RETURN 1

B(1) = .50 * (Y(l)*(Y(2)*El+ARX1) +Y(4)*

(Y(5) * E2-ARX2))

U = B(1) / RHO

US = U**2

UMY2S = (U - Y(Z))**2

UMY 5S = (U - Y(5))**2

UX2MY2 = 2. 0 * U - Y(2)

UX2MY5 = 2.0 * U - Y(5)

P = (Y(1)/6. OD0) * ((UMY2S + 1. 50Y (3))*
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El - ARX1 * UX2MY2 )

C+ (Y(4)/6. ODO) * ((UMY5S + 1. 50*Y(6))*-E2 +

ARX2 * UX2MY5

TEMP = P/RHO

TAUXX = -(1. ODO/3. ODO)*(Y (1)(UMY2S*E -

UXZMY2 * ARX1 ) + Y(4) *

C (UMY 5S*E2 + UX2MY 5 * ARX2 ) )

QX = .250 * (Y(1),(-2. 50,Y(3) + UMY2S ) ·

(U-Y(2))*E1 + (2. 0*Y(3) +

CY2S + 3.0* (US - U*Y(2)) )*'ARX1) - Y(4)*

((2. 50 * Y(6) + UMY5S ) *

C(U-Y (5))j*2 + (2. 0*Y(6) + Y5S + 3.0 *(US -

U"'Y(5)) )* ARX2 )

TOTH = 2. 50 - TEMP + .50 * US

SIGMXX = TAUXX - P

B(2) = RHO*US - SIGMXX

B(3) = RHO*'U * (1. 50 * TEMP + . 50* US) -

U * SIGMXX + QX

EVCOEF = 2. 0 * B(1) / (A* (ALF(1) * (DSQRT

(ALF(3))) - ALF(4) * (D

CSQRT(ALF(6))) ))

RETURN

END
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C SUBROUTINE DRVTV

SUBROUTINE DRVTV(Y, W, RE,F, G,*)

IMPLICIT REAL *8 (A-H,O-Z)

C PUR POSE

C OBTAIN VALUES OF DERIVATIVES WJ AT

GIVEN X KNOWING YJ AND RE

DIMENSION Y (6), W(6), B(3), G(6), F(6, 6)

A = 1.0/DSQRT(3. 141592D0)

IF (Y(3) .GE.0) GO TO 1000

WRITE (6, 1001)

1001 FORMAT (IHO, 10X, 'SQUARE ROOT OF A

NEGATIVE NUMBER Y(3) SUB D')

RETURN 1

1000 IF (Y (6) .GE. 0) GO TO 1002

WRITE (6, 1003)

1003 FORMAT (1HO, 10X, 'SQUARE ROOT OF A

NEGATIVE NUMBER Y(6) SUB D')

RETURN 1

1002 R1 = DSQRT (Y(3))

R2 = DSQRT (Y(6))

E1 = 1.0 + DERF (Y(2)/R1)

E2 = 1.0 + DERF (-Y(5)/R2)

X1 = DEXP (- (Y(2) **2) / Y(3).)

X2 = DEXP (-(Y(5) **2) / Y(6) )
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ARX1 = A * R 1 *Xl

ARX2 =A * R2 * X2

YAXDR1 = Y(1) * A * X1 / R1

YAXDR2 = Y(4) * A * X2 / R2

Y1E = Y(1) * El

Y4E = Y(4) * E2

Y2E = Y(2) * El

Y5E = Y(5) * E2

Y12 = Y(1) * Y (2)

Y45 = Y(4) * Y(5)

YZS = Y(2)**2

Y 5S = Y (5)**2

RHO = . 50 * (Y1E + Y4E)

B(1) = 0. 5 * (Y(1) (Y2E + ARX1) + Y(4) *

(Y5E - ARX2) )

U = B(1)/RHO

USQ = U**2

B(2) = .50 * (Y(1) * ( ( .50 * Y(3) +Y2S) *

El + Y(2) *ARX1) +

C Y(4) * ( ( .50 * Y(6) + Y5S ) * E2 - Y(5) * ARX2))

B(3) =.250 * (Y(1) a ((2. 50 * Y(3) + Y2S ) *

Y2E + (2.0 * Y(3)+ Y2S ) *

C ARX1 ) + Y(4) * ( 2.50 * Y(6) + Y5S) * Y5E -
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C (2.0 Y(6) + Y5S)* ARX2 ) )

F(l, 1) = Y2E +ARX1

F(1,2) = Y1E

F(1,3) = 0.5 * YAXDR1

F(1,4) = Y5E - ARX2

F(1, 5) = Y4E

F(1,6) = -0.5 * YAXDR2

F(2, 1) = (. 50 * Y(3) + Y2S) * El + Y(2) * ARX1

F(2,2) = 2.0 * Y(1) * (Y2E +ARX1)

F(2,3) = .50 *Y1E

F(2,4) = (. 50 * Y(6) + Y5S) * E2 - Y(5) * ARX2

F(2, 5) = 2.0 * Y(4) * (Y5E - ARXZ)

F(2,6) =.50 Y4E

F(3, 1) = (Y2S + 1.5 * Y(3))*Y2E +ARX1*:

(Y(3) +Y2S)

F(3,2) = 3.0 * Y(1) * ((Y2S + 0.50 * Y(3)) *

El + Y(2) * ARX1)

F(3,3) = 1.5 * Y(1) * (YZE +ARX1)

F(3,4) = (Y5S + 1.5 * Y(6)) * Y5E - ARX2 *

(Y(6) + Y5S)

F(3, 5) = 3.0 * Y(4) * ((Y5S + 0.50 Y(6))*

E2 - Y(5) :ARX2)

F(3,6) = 1.5 * Y(4) * (Y5E - ARX2)



(Y2E +ARX1)

Y1E

(Y2E + 1. 5 * ARX1)

(Y5E - ARX2)

Y4E

(Y5E - 1. 5 * ARX2)

5* Y(3) + 4.0 * Y2S )

* E1

* (Y2S + 3. 50 * Y(3)

F(5,2) = Y(1) * ARX1 * ( 6.0

+ 4.0 * Y1E * Y(2) * (2.0 * %

F(5,3) = Y1E ;: (2. 5 Y(3) +

4.0 * Y12 * ARX1

F(5,4) = (Y(6) * (1.25. Y(6)

Y 5S**2 ) * E2 - ARX2

C * Y(5) * (Y5S + 3. 50 * Y(6)

F(5, 5) = -Y(4) * ARX2 * (6. 0

Y5S) + 4.0 * Y4E

C * Y(5) * (2.0 * Y(6) + Y5S )

F(5, 6) = Y4E * (2. 5 * Y(6) +

Y45 * ARX2

F(6, 1) = (Y(3) * (0. 75 * Y(3)

Y2S*2 ) * El +

* Y(3) + 4.0 * Y2S)

y (3) + Y2S )

4.0 * YZS) +

+ 4.0 * Y 5S) +

) * Y(6) +4.0 *

4. 0 * Y 5S) - 4.0 *

+ 3.0 * Y2S) +
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F(4, 1)

F (4,2)

F(4, 3)

F(4,4)

F(4, 5)

F (4,6)

F(5, 1)

Y(3) +

C + Y(2)

= Y(3) *

= Y(3) ·

= Y(1) *

!=Y (6) "

= Y(6) *

= Y(4) *

= ( (1.25

Y2S**2 )

* ARX1 )

) *

- I I 
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C Y(2) * ARX * ( Y2S +2.5 * Y(3))

F(6,2) = Y12 * (4. 0*Y2S + 6. O*Y(3) ) * El +

4.0 * Y(1) * ARX1 * (Y2S +Y(3) )

F(6,3) = 3.0 * Y1E * (0. 5*Y(3) + Y2S) +

3.0 * Y12 * ARX1

F(6,4) = ((.750 * Y(6) + 3.0 * Y5S) * Y(6) +

Y 5S*2 ) * E2 - Y(5)

C * ARX2 ( Y5S + 2. 5 * Y(6) )

F(6, 5) = Y45 * (4. 0*Y5S + 6.0 * Y(6) ) * E2 -

4.0 Y (4) * ARX2 * (Y 5S + Y(6) )

F(6,6) = 3.0 * Y4E * (0.5 * Y(6) + Y5S) -

3.0 * Y45 * ARX2

G(1) = 0. 0

G(2) = 0. 0

G(3) = -(2. 0DO/3.0DO) * RHO * RE * (2.0 *

RHO * USQ - 2.0 *

CB(2) + . 50 * (Y 1E * Y(3) + Y4E + Y(6) ) )

G(4) = -G(3)

G(5) = (4. ODO/3. ODO) * RHO * RE* (2.0 * B(3)

- U * (B(2) + Y1E

C* Y(3) + Y4E * Y(6) ) )

G(6) = 2.0 * RHO * RE * (-U *.(B(2) + .250 *

(Y1E * Y(3) + Y4E
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C * Y(6) ) ) +2.0 * B(3) - .750 Y(1) * Y(3) 

(Y2E + ARX1 ) -

C. 750 * Y(4) * Y(6) * (Y5E - ARX2 ) )

C SUBROUTINE DSIMQ IS AN IBM PROGRAM WHICH

C SOLVES A SYSTEM OF SIMULTANEOUS LINEAR

C EQUATIONS - DOUBLE PRECISION.

49 CALL DSIMQ(F,G,6, KS)

DO 50 I=1, 6

50 W(I) = -G(I)

IF (KS. EQ. 0) GO TO 51

WRITE (6, 52)

52 FORMAT(1HO, lOX, 'KS IS ONE SINGULAR

SOLUTION ')

RETURN 1

51 CONTINUE

RETURN

'END

C SHOOTING-SPLITTING MAIN PROGRAM WHICH

STARTS AT X=0.

IMPLICIT REAL *8 (A-H,O-Z)

REAL *8 K, L,M

DIMENSION ALF(6), YO(6), W(6), B(3), F(6, 6),

G(6), Y (6), Z(6), K(6,4)
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INTEGER CTR 1

READ (5,10) (ALF(I),I=1,6),YO(4),YO(6),RE

10 FORMAT (6E12.8/3E12.8)
10 FORMAT (62(o) is the critical parameter
in shooting-splitting technique.

3 READ (5,31, END = 9999) YO(5) It is constant near x=O and
drops off sharply at x=l.

31 FORMAT (E12.8)

A = 1.0/DSQRT (3. 141592D0)

20 X=O.0

CTR1 = 0

Y(1) = ALF(1)

Y (2) = ALF(2)

Y(3) =ALF(3)

Y (4) = YO(4)

Y(5) = YO(5)

Y (6) = YO(6)

CALL PHYSPR (Y,ALF,RHO, U,P, TEMP,

TAUXX, QX, TOTH, B, EVCOEF, &800)

WRITE (6,3) RE, (Y(I),I=1,6),(B(I),I=1,3)

30 FORMAT (1H1,38X, 'FLAT PLATE EVAPORATION-

CONDENSATION PROBLEM '

C///1H, 'INITIAL CONDITIONS RE =',

E12. 6, ' Y(1) = ', E12.6,

C' Y(2) = ', E12.6, ' Y(3)= ' E12. 6,

Y(4) = ', E12. 6 /H,
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C21X, 'Y(5) = ', E12.6, Y(6) = ', E12.6 '

B(1) = ', E12.6,

CB(2) = ', E12.6 , ' B(3) = ', E12.6 ///1H,

'CTR1 X

C D Y(1)', ' Y(2) Y(3) Y(4)',

C Y(5) Y (6)'/1IH, 17X, 'RHO U

CP ', 'TEMP TAUXX QX TOTH', '

C EVCOEF ')

60 CALL DRVTV(Y, W, RE, F,G,&800)

IF (CTR1 .EQ. 10000) GO TO 800

215 CALL PHYSPR(Y,ALF,RHO, U, P, TEMP,

TAUXX, QX, TOTH, B, EVCOEF, &800)

WRITE (6,216) CTR1,X,D, (Y(I),I=1,6),

RHO, U, P, TEMP, TAUXX, QX, TOTH, EVCOEF

216 FORMAT (1H, I4, 1P8E13.4/1H,llX, 1P8E13.4)

INTEGRATE Y(J) TO X+D USING 4TH ORDER

R-K AND VARIABLE STEP SIZE

217 IF (CTR1 .LT. 50) GO TO 81

D = 0.001

GO TO 82

81 D = 0.0001

82 X = X+D

IF (CTR1 .LT. 50) GO TO 91
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CTR1 = CTR1+10

GO TO 220

91 CTR1 = CTRL + 1

C NEXT EVALUATE THE COEFFICIENTS USED IN

EXPRESSION FOR Y(J)

DO 230 I=1,6

K(I, 1) = D * W(I)

230 Z(I) = Y(I) + 0. 50 * K(I, 1)

CALL DRVTV(Z, W, RE, F, G, &800)

DO 231 I=1,6

K(I,2) = D * W(I)

231 Z(I) = Y(I) + 0. 50 * K(I,2)

CALL DRVTV(Z, W, RE, F,G, &800)

DO 232 I=1,6

K(I,3) = D * W(I)

232 Z(I) = Y(I) + K(I,3)

CALL DRVTV(Z, W, RE, F,G, &800)

C -NOW INTEGRATE Y(J) TO X+D USING THESE

COEFFICIENTS

DO 233 I=1,6

233 Y(I) = Y(I) + (K(I, 1) + D*W(I) )/6. ODO + (K(I,2)

+ K(I,3))/3. ODO



IF (Y(5) .GE. 0.0)

IF (Y(5) .I.E. -1.0)

IF (Y(3) .GE. 0) G

WRITE (6, 1)

1 FORMAT (1HO, 10X,

NEGATIVE NUMBER

GO TO 800

240 IF (Y(6) .GE. 0) (

WRITE (6,2)

GO TO 61

GO TO 62

O TO 240

'SQUARE ROOT OF

Y (3)')

GO TO 245

2 FORMAT (lHO, 10X, 'SQUARE ROOT OF

NEGATIVE NUMBER Y(6)')

GO TO 800

245 CONTINUE

IF (X-1.0) 60, 60,800

9999 CALL EXIT

800 WRITE (6,69) (B(I),I=1,3)

69 FORMAT (lHO, 'B(I), 1=1,3=' 1P3E15.6)

GO TO 3

61 WRITE (6,63)

63 FORMAT (LHO, 10X, 'Y(5) IS GREATER THAN

OR EQUAL TO ZERO ')

WRITE (6,65) (B(I),I=1,3)

65 FORMAT (1H0, 'B(I), I=1,3 = ' 1P3E16.6)

123
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GO TO 3

62 WRITE (6,64)

64 FORMAT (1HO, 10X, 'Y(5) IS LESS THAN OR

EQUAL TO MINUS ONE')

WRITE (6,67) (B(I), I=1,3)

67 FORMAT(1HO, 'B(I),I=1,3 = ' 1P3E16.6)

GO TO 3

END

C SHOOTING-SPLITTING MAIN PROGRAM WHICH STARTS

AT X = NUMBER.

IMPLICIT REAL *8 (A-H,O-Z)

REAL *8 K,L,M

DIMENSION ALF(6), YO(6), W(6), B(3), F(6, 6), G(6),Y(6) ,Z(6) ,K(6,4)

INTEGER CTRI

C ALF(I) = VALUES OF UP CURVE AT X; YO(I) = VALUES OF DOWN CURVE AT X.

3 READ (5, 10,END=9999) (ALF(I),I=I, 6), (YO(I),I=1, 6),

CTR1,X,RE

10 FORMAT (6E12.8/6ElZ2.8/I5,2E12.8)

A=I. O/DSQRT (3. 141592D0)

DO 99 I1=1,6

99 Y(I) = (ALF(I) + YO(I))/2. ODO

CALL PHYSPR(Y,ALF, RHO, U, P, TEMP,

TAUXX,QX,TOTH, B,EVCOEF, &800)
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WRITE (6,30) RE, (Y(I),I=1, 6), (B(I),I=1,3)

30 FORMAT (1HI, 38X,'FLAT PLATE EVAPORATION

-CONDENSATION PROBLEM '

C///1H, 'INITIAL CONDITIONS RE = '

E12.6, ' Y(1) = ', E12. 6

C' Y(2) = ', E12.6, ' Y(3) = ', E12. 6, '

Y(4) = ', E12. 6 /1H,

C21X, 'Y(5)= ', E12.6, ' Y(6) = ', E12.6, '

B(1) = ', E12. 6 '

CB(2) = ', E12. 6, ' B(3) = ', E12. 6 ///1H,

'CTR1 X

C D Y(1)', ' Y(2) Y(3) Y(4) ',

C Y(5) Y(6)'/1H, 17X, 'RHO U

C P ' 'TEMP TAUXX QX TOTH','

C EVCOEF' )

60 CALL DRVTV(Y, W, RE, F, G, &800)

IF (CTR1 .EQ. 20000) GO TO 800

215 CALL PHYSPR(Y,ALF,RHO,U,P, TEMP,

TAUXX,QX, TOTH, B, EVCOEF, &800)

WRITE (6,216) CTR1,X,D, (Y(I), I=1,6),RHO,

U, P, TEMP, TAUXX, QX, TOTH, EVCOEF

216 FORMAT (1H, I5, 1P8E13.4/1H,11X,1P8E13.4)

INTEGRATE Y(J) TO X+D USING 4TH ORDER



126

R-K AND VARIABLE STEP SIZE

D = 0.001

X = X+D

CTRI = CTRI + 10

C NEXT EVALUATE THE COEFFICIENTS USED IN

EXPRESSION FOR Y(J)

DO 230 I=1,6

K(I,1) = D * W(l)

230 Z(I) = Y(1) + 0.50 * K(I,1)

CALL DRVTV(Z,W,RE,F,G,&800)

DO 231 I=1,6

K(1,2) = D * W(I)

231 Z(I) = Y(I) + 0.50 * K(1,2)

CALL DRVTV(Z,W,RE,F,G,&800)

DO 232 I=1,6

K(1,3) = D * W(I)
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232 Z(I) = Y(I) + K(I, 3)

CALL DRVTV(Z, W, RE, F, G, &800)

C NOW INTEGRATE Y(J) TO X+D USING THESE

COEFFICIENTS

DO 233 I=1,6

233 Y(I) = Y(I) + (K(I, 1) + D*W(I))/6. ODO +

(K(I, 2) + K(I, 3))/3. OD0

IF (Y(5) .GE. 0.0) GO TO 61

IF (Y(5) .LE. -1. 0) GO TO 62

IF (Y(3) .GE. 0) GO TO 240

WRITE (6, 1)

1 FORMAT (IHO, 10X, 'SQUARE ROOT OF

NEGATIVE NUMBER Y (3)')

GO TO 800

240 IF (Y(6) .GE. 0) GO TO 245

WRITE (6,2)

2 FORMAT (IHO, lOX, 'SQUARE ROOT OF

NEGATIVE NUMBER Y(6) ')

GO TO 800

245 CONTINUE

IF (X-2.0) 60, 60,800

9999 CALL EXIT

800 WRITE (6,69) (B(I), I=1,3)
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69 FORMAT (IHO, 'B(I), I=1,3 = ' 1P3E15. 6)

GOTO 3

61 WRITE (6, 63)

63 FORMAT (IHO, 10X, 'Y(5) IS GREATER THAN

OR EQUAL TO ZERO')

WRITE (6,65) (B(I), I=1,3)

65 FORMAT (H0O, 'B(I), I=1,3 =' 1P3E16.6)

GO TO 3

62 WRITE (6, 64)

64 FORMAT (lHO, 1OX, 'Y(5) IS LESS THAN OR

EQ UAL TO MINUS ONE')

WRITE (6,67) (B(I),I=1,3)

67 FORMAT (IHO, 'B(I), I=1,3 = ' 1P3E16.6)

GO TO 3

END



APPENDIX D

A NAVIER-STOKES TYPE FORMULATION OF THE

LEES' MOMENT EQUATIONS

The six moment equations to be used are

continuity
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+- (n uX n
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(33)

(34)

(35)
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x-momentum flux

dd [ nl(u + 1Ul)E+nl ( + u) X2

3 3 2
+ n 2 ( 2 + - 8 2 u 2 )E

f
-n 2 T (82 U2) X 2 ]

+2 P [-2n u + ZB 2 - 2 (n 1B 1 E 1 + n 2 BzE 2 )] (36)

x-energy flux

d 52 2 37
dx n, 4 B1 +4u Bi+ u El+n (u1 +2 U1) X 1

n2( 4 22 2+ U U2 Ar4 (U2 + U2 2 ) X 2 ]

+ 4 P[ 2B3- u B2 - u(BlnlE l+ B 2 )] (38)

x-fiux of C
x

dx[n, ( 1 + 30 + 1 l + 2 B( U ) 1

3 2 2 2 3 5
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2
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2
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+ 2 P [ -U(Bz+ 1 (n 11El+ n 28E2)) +2B
3

3
- T (n1 1U 1 E1 + n2z 2 U 2 E 2 )

B2n2 X 2 = 0 

and

1
n = (nlEl+ n E )2 1 1 2 2

'1K n

nZ
+'i-

u )2+ 3 F )E (2 u-Ul)X
1

3 22
' BZ)E2+ - (2u-u2 )X 2 }]

(39)

(D. 1)

}

(D. 2)

where R is the gas constant, X1= e

2
i 1I X 2

, X. e

1 + erf ul/ JV , and E2= 1 + erf (-U2//2 )' These equations can1 1 2 2 2 ~ h s q a i n a
U

be rewritten in terms of speed ratio S - --.
/2RT

The result is

c ontinuity

nlu
1

2

X 1

S
1

n2 U2

+ 2 (E2-

x-momentum

2
nlu1 E

1 1 ( 12E+

1

2X1 )

sIIS

2
n

2
u2

4
2 + 2E -

2 2
2

1 X2
I Sz2 ) = B1
;;- 2?

(D.. 3)

2X

2 )= B
2

SZ rr (D.4)

2
-u

2 / B2
, El=

- 43(@lnlXl IZ TT~~

(E + 1
v TT

((u U )Z+



132

energy

3
nl U 51 X 12X( + Z - +

4 ( El+ 1 3 1S S1-s s / _TT S
1

+ 2 u2 f 5 2 X2 2X2 

2 2 2

x-momentum flux

d E -+E+ +d 3 ( 3 E 1 x 

djx 1 2 2 + E 1 s
S IVI_11 ~S1 /~
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3,3 E2 X2
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x I
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x-energy flux

d n 4 5 1 4
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2

x-flux of C
x
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To develop a Navier-Stokes type representation from equations

(D. 3) to (D. 9), a procedure analogous to that used by Chapman and

21
2]

2zf

(D. 8)

T nR1 n I
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Enskog is followed here. Let

n = n(l + n')~1 1~~.

n2 = n(l + n 2 )

S1 S(1 +S')

S2 S(1 + S')
2 2

U1 = (1 +U 1 )

U = u(1 + U)

where the differences

n - n n (n - n 2 )

ul- u2 = u(U U2 )

S S = S(S S
1 2 1 2

express a small deviation from equilibrium. By placing these

expansions into equations (D. 1) and (D. 3) to (D. 9), there results

continuity

nu = B 1 (D. 10)
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energy
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where the combinations

density

+ + (nn) erfS + S = 
nl 2 1 +n2 1- f + ,T 2-~~; 

continuity
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3 12

were used to simplify the above equations. Hence, in combining

equations (D. 11) and (D. 13), the x-monomentumn equation becomes

nu(1 + I- 
2S5

) u ) = B2 .1 d (2 + 3
S

_s
2

,- e

-(n
i

- n )
1 2S r:

-S)- S )

2

- n2)

0

(D. 16)
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A similar expression can be obtained for the energy equation,

but it is less obvious. Define

X = dx u
)

d (2 +82 5N"3
S 2S

Z = d ( + 6 + 4 u
S 2 2S 4

The differential equations (D. 13) to (D. 15) simplify to

X
2

-T(S) IT (2S + 1)AS - AN]

7 )AS -
4S

(I + Z) AN
Zs

+ 7 Au 
4 S2

S

z = -2Q(S) u -2 )A4S
4S

2(1 2z )AN
2S

+ Au 4S
4S

where Q(S) = p u 

Au - U2 . TheseA u= U~- U 2. These

2
-S

e

s /'T
,AS= S- S AN n- n, and

three equations are solved for AS, AN, and A u

Y
- Q(S) u [(S + 1

[ (S +
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in tern-is of X, Y, and Z. The solution is

SZY 8 SZ
Au = - Q U+3 Q u

sZY 7 ZSAS = + 
2Qu 3 3Qu

ZQu 3

21 X

+ 1)S 6S(S+ 1)

(2S+ 1)S2Z 6XS (S + 1)
Qu Q

By placing these results into the energy equation (D. 12), we have

3
nrU [2 + + [3 1 d (2 + 8 +5 ) u3

4 p F-u u I u dx
S + 2S

+ d ( +2 ) u X )=B 3 . (D.17)

Equations (D. 16) and (D. 17) do not reduce to the one dimen-

sional viscous equations even though they are similar in form.

d/dx (2 + 3/S
2
) u is related to a stress term and

d/dx (2 + 8/S + 5/2S4)u3 can be thought of as a conduction type

term. If the d/dx C ] terms are zero, then (D. 10), (D. 16) and

(D. 17) reduce to the inviscid equations

nu = B 1
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nu 2 1 + 1 ) = 
2S

3
nu
4

2 + 5 ) 
S 23

p . u + P = B'

2u * (5
u U 5 RT) = B

3

pu = B'

The stress term in equations (D. 16) and (D. 17) is not invariant

under a Galilean transformation as is the stress term in the one-

dimensional viscous equations. This not surprising since Lees' two

sided Maxwellian is referenced to a particular coordinate system.

or


